|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- @File : test_parse.py
- @Author:
- @Date : 2019-01-23 17:13
- @Desc :
- """
- import logging
- import pytest
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.ops import composite as C
- from mindspore.common.api import ms_function, _executor
- from mindspore.ops._grad.grad_base import bprop_getters
- from mindspore.ops.primitive import prim_attr_register, PrimitiveWithInfer
- from mindspore.ops.functional import tensor_add
- from ...ut_filter import non_graph_engine
-
- # pylint: disable=W0613,W0612
- # W0613: unused-argument
-
-
- log = logging.getLogger("test")
- log.setLevel(level=logging.ERROR)
- context.set_context(mode=context.GRAPH_MODE)
-
-
- # Test case: use the parse obj interface use default parameter
- class Net(nn.Cell):
- """ Net definition """
-
- def __init__(self, dim):
- super(Net, self).__init__()
- self.softmax1 = nn.Softmax(dim)
- self.softmax2 = nn.Softmax(dim + 1)
-
- def construct(self, input_data, input1=ms.Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))):
- return self.softmax1(input_data)
-
-
- @non_graph_engine
- def test_parse_defalut_parameter_case2():
- """ test_parse_defalut_parameter_case2 """
- log.debug("begin test_parse_defalut_parameter_case2")
- net = Net(0)
- npd = np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')
- log.debug("input value is: %r", npd)
- input_data = ms.Tensor(npd)
- input_data.set_dtype(ms.float32)
-
- log.debug("start run")
- output = net(input_data)
-
- value = output.asnumpy()
- log.debug("output value = %r", value)
-
-
- # Test case: use the variable parameter for parse object
- class Net1(nn.Cell):
- """ Net1 definition """
-
- def __init__(self):
- super(Net1, self).__init__()
-
- def construct(self, *args):
- x = args[0]
- return x
-
-
- def test_var_parameter_case2():
- """ test_var_parameter_case2 """
- log.debug("begin test_var_parameter_case2")
- net = Net1()
- npd = np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')
- log.debug("input value is: %r", npd)
- input_data = ms.Tensor(npd)
- input_data.set_dtype(ms.float32)
-
- np1 = np.random.randn(2, 3, 4, 5).astype(np.float32)
- input1 = ms.Tensor(np1)
- np2 = np.random.randn(2, 3, 4, 5).astype(np.float32)
- input2 = ms.Tensor(np2)
-
- _executor.compile(net, input_data, input1, input2)
-
-
- # Test case: test the global flag
- g_x = Tensor(np.ones([3, 3]).astype(np.float32))
-
-
- @ms_function
- def tensor_add_global(x):
- """ tensor_add_global """
- global g_x
- res = tensor_add(x, g_x)
- return res
-
-
- @non_graph_engine
- def test_global_flag():
- """ test_global_flag """
- log.debug("begin test_global_flag")
- x = Tensor(np.ones([3, 3]).astype(np.float32))
- res = tensor_add_global(x)
- log.debug("finished test_global_flag, ret = %r", res)
-
-
- class NetWithNDarray(nn.Cell):
- """ NetWithNDarray definition """
-
- def __init__(self, dim):
- super(NetWithNDarray, self).__init__()
- self.softmax = nn.Softmax(dim)
- self.x = ms.Tensor(np.ones(shape=(1)).astype(np.float32))
-
- def construct(self, input_data):
- return self.softmax(input_data) * self.x
-
-
- @non_graph_engine
- def test_net_with_ndarray():
- """ test_net_with_ndarray """
- net = NetWithNDarray(0)
- input_data = np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')
-
- net(ms.Tensor(input_data))
-
-
- def test_bprop_with_wrong_output_num():
- context.set_context(check_bprop=True)
- class BpropWithWrongOutputNum(PrimitiveWithInfer):
- @prim_attr_register
- def __init__(self):
- super(BpropWithWrongOutputNum, self).__init__('BpropWithWrongOutputNum')
-
- def __call__(self, x, y):
- return x
-
- def infer_shape(self, x_shape, yshape):
- return x_shape
-
- def infer_dtype(self, x_type, y_type):
- return x_type
-
- @bprop_getters.register(BpropWithWrongOutputNum)
- def get_bprop_with_wrong_output_num(self):
- """Generate bprop for BpropWithWrongOutputNum"""
-
- def bprop(x, y, out, dout):
- return (dout,)
-
- return bprop
-
- class BpropWithWrongOutputNumCell(nn.Cell):
- def __init__(self):
- super(BpropWithWrongOutputNumCell, self).__init__()
-
- def construct(self, x, y):
- return BpropWithWrongOutputNum()(x, y)
-
- with pytest.raises(TypeError):
- C.grad_all(BpropWithWrongOutputNumCell())(1, 2)
-
- def test_bprop_with_wrong_output_type():
- context.set_context(check_bprop=True)
- class BpropWithWrongOutputType(PrimitiveWithInfer):
- @prim_attr_register
- def __init__(self):
- super(BpropWithWrongOutputType, self).__init__('BpropWithWrongOutputType')
-
- def __call__(self, x):
- return x
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_type):
- return x_type
-
- @bprop_getters.register(BpropWithWrongOutputType)
- def get_bprop_with_wrong_output_type(self):
- """Generate bprop for BpropWithWrongOutputType"""
-
- def bprop(x, out, dout):
- return (1,)
-
- return bprop
-
- class BpropWithWrongOutputTypeCell(nn.Cell):
- def __init__(self):
- super(BpropWithWrongOutputTypeCell, self).__init__()
-
- def construct(self, x):
- return BpropWithWrongOutputType()(x)
-
- with pytest.raises(TypeError):
- C.grad_all(BpropWithWrongOutputTypeCell())(Tensor(np.ones([64, 10]).astype(np.int32)))
-
-
- def test_bprop_with_wrong_output_shape():
- context.set_context(check_bprop=True)
- class BpropWithWrongOutputShape(PrimitiveWithInfer):
- @prim_attr_register
- def __init__(self):
- super(BpropWithWrongOutputShape, self).__init__('BpropWithWrongOutputShape')
-
- def __call__(self, x):
- return x
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_type):
- return x_type
-
- @bprop_getters.register(BpropWithWrongOutputShape)
- def get_bprop_with_wrong_output_shape(self):
- """Generate bprop for BpropWithWrongOutputShape"""
- ones = Tensor(np.ones([2,]).astype(np.int32))
-
- def bprop(x, out, dout):
- return (ones,)
-
- return bprop
-
- class BpropWithWrongOutputShapeCell(nn.Cell):
- def __init__(self):
- super(BpropWithWrongOutputShapeCell, self).__init__()
-
- def construct(self, x):
- return BpropWithWrongOutputShape()(x)
-
- with pytest.raises(TypeError):
- net = BpropWithWrongOutputShapeCell()
- net.set_grad()
- C.grad_all(net)(Tensor(np.ones([64, 10]).astype(np.int32)))
|