|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """test layer switch"""
- import numpy as np
-
- import mindspore
- from mindspore import nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.ops import operations as P
-
-
- context.set_context(mode=context.GRAPH_MODE)
-
-
- class Layer1(nn.Cell):
- def __init__(self):
- super(Layer1, self).__init__()
- self.net = nn.Conv2d(3, 1, 3, pad_mode='same')
- self.pad = nn.Pad(
- paddings=((0, 0), (0, 2), (0, 0), (0, 0)), mode="CONSTANT")
-
- def construct(self, x):
- y = self.net(x)
- return self.pad(y)
-
-
- class Layer2(nn.Cell):
- def __init__(self):
- super(Layer2, self).__init__()
- self.net = nn.Conv2d(3, 1, 7, pad_mode='same')
- self.pad = nn.Pad(
- paddings=((0, 0), (0, 2), (0, 0), (0, 0)), mode="CONSTANT")
-
- def construct(self, x):
- y = self.net(x)
- return self.pad(y)
-
-
- class Layer3(nn.Cell):
- def __init__(self):
- super(Layer3, self).__init__()
- self.net = nn.Conv2d(3, 3, 3, pad_mode='same')
-
- def construct(self, x):
- return self.net(x)
-
-
- class SwitchNet(nn.Cell):
- def __init__(self):
- super(SwitchNet, self).__init__()
- self.layer1 = Layer1()
- self.layer2 = Layer2()
- self.layer3 = Layer3()
- self.layers = (self.layer1, self.layer2, self.layer3)
- self.fill = P.Fill()
-
- def construct(self, x, index):
- y = self.layers[index](x)
- return y
-
-
- class MySwitchNet(nn.Cell):
- def __init__(self):
- super(MySwitchNet, self).__init__()
- self.layer1 = Layer1()
- self.layer2 = Layer2()
- self.layer3 = Layer3()
- self.layers = (self.layer1, self.layer2, self.layer3)
- self.fill = P.Fill()
-
- def construct(self, x, index):
- y = self.layers[0](x)
- for i in range(len(self.layers)):
- if i == index:
- y = self.layers[i](x)
- return y
-
-
- def test_layer_switch():
- net = MySwitchNet()
- x = Tensor(np.ones((3, 3, 24, 24)), mindspore.float32)
- index = Tensor(0, dtype=mindspore.int32)
- net(x, index)
|