|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 |
-
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test parameter """
- import numpy as np
- import pytest
-
- from mindspore import Tensor, Parameter, ParameterTuple
- from mindspore._checkparam import _check_str_by_regular
- from mindspore.common import dtype as mstype
- from mindspore.common.initializer import initializer
-
-
- def test_parameter_init():
- dat = np.array([[1, 2, 3], [2, 3, 4]])
- tensor = Tensor(dat)
- Parameter(tensor, name="testParameter", requires_grad=True, layerwise_parallel=False)
-
-
- def test_parameter_tuple_illegal():
- p1 = Parameter(initializer(0, [1], mstype.int32), name="global_step1")
- p2 = Parameter(initializer(0, [1], mstype.int32), name="global_step2")
- plist = [p1, p2]
- plist2 = [p1, "str"]
- ptuple = (p1, p2)
- ptuple_str = ("2", "1")
- pstr = "[2,3]"
- pnum = 3
-
- ParameterTuple(plist)
- ParameterTuple(ptuple)
- with pytest.raises(TypeError):
- ParameterTuple(p1)
- with pytest.raises(ValueError):
- ParameterTuple(plist2)
- with pytest.raises(ValueError):
- ParameterTuple(ptuple_str)
- with pytest.raises(ValueError):
- ParameterTuple(pstr)
- with pytest.raises(TypeError):
- ParameterTuple(pnum)
-
-
- def test_parameter_init_illegal():
- dat = np.array([[1, 2, 3], [2, 3, 4]])
- tensor = Tensor(dat)
- data_none = None
- data_bool = True
- data_str = "nicai"
- data_int = 3
- data_list = [1, "2", True]
- data_tuple = (1, 2, 3)
-
- # test data
- Parameter(tensor, name=data_str)
- Parameter(data_int, name=data_str)
- Parameter(dat, name=data_str)
- with pytest.raises(ValueError):
- Parameter(data_bool, name=data_str)
-
- # test name
- Parameter(tensor, name=data_none)
- with pytest.raises(ValueError):
- Parameter(tensor, name=dat)
- with pytest.raises(ValueError):
- Parameter(tensor, name=tensor)
- with pytest.raises(ValueError):
- Parameter(tensor, name=data_bool)
- with pytest.raises(ValueError):
- Parameter(tensor, name=data_int)
- with pytest.raises(ValueError):
- Parameter(tensor, name=data_list)
- with pytest.raises(ValueError):
- Parameter(tensor, name=data_tuple)
-
- Parameter(tensor, name=data_str, requires_grad=data_bool)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_none)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=dat)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=tensor)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_str)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_int)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_list)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_tuple)
-
- Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_bool)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=dat)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=tensor)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_none)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_str)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_int)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_list)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_tuple)
-
-
- def test_check_str_by_regular():
- str1 = "12_sf.asdf_"
- str2 = "x12_sf.asdf."
- str3 = "_x12_sf.asdf"
- str4 = ".12_sf.asdf"
- str5 = "12_sf.a$sdf."
- str6 = "12+sf.asdf"
- _check_str_by_regular(str1)
- _check_str_by_regular(str2)
- _check_str_by_regular(str3)
- with pytest.raises(ValueError):
- _check_str_by_regular(str4)
- with pytest.raises(ValueError):
- _check_str_by_regular(str5)
- with pytest.raises(ValueError):
- _check_str_by_regular(str6)
-
- def test_parameter_lazy_init():
- # Call init_data() without set default_input.
- para = Parameter(initializer('ones', [1, 2, 3], mstype.float32), 'test1')
- assert not isinstance(para.default_input, Tensor)
- para.init_data()
- assert isinstance(para.default_input, Tensor)
- assert np.array_equal(para.default_input.asnumpy(), np.ones((1, 2, 3)))
-
- # Call init_data() after default_input is set.
- para = Parameter(initializer('ones', [1, 2, 3], mstype.float32), 'test2')
- assert not isinstance(para.default_input, Tensor)
- para.default_input = Tensor(np.zeros((1, 2, 3)))
- assert np.array_equal(para.default_input.asnumpy(), np.zeros((1, 2, 3)))
- para.init_data() # expect no effect.
- assert np.array_equal(para.default_input.asnumpy(), np.zeros((1, 2, 3)))
|