You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_nn_pad.py 2.0 kB

5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test nn pad """
  16. import numpy as np
  17. import mindspore.nn as nn
  18. from mindspore import Tensor
  19. from mindspore.common.api import ms_function
  20. from mindspore.ops.composite import GradOperation
  21. class Net(nn.Cell):
  22. def __init__(self, raw_paddings, mode):
  23. super(Net, self).__init__()
  24. self.pad = nn.Pad(raw_paddings, mode=mode)
  25. @ms_function
  26. def construct(self, x):
  27. return self.pad(x)
  28. class Grad(nn.Cell):
  29. def __init__(self, network):
  30. super(Grad, self).__init__()
  31. self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
  32. self.network = network
  33. @ms_function
  34. def construct(self, x, grads):
  35. return self.grad(self.network)(x, grads)
  36. def test_pad_train():
  37. mode = 'CONSTANT'
  38. x = np.random.random(size=(2, 3)).astype(np.float32)
  39. raw_paddings = ((1, 1), (2, 2))
  40. grads = np.random.random(size=(4, 7)).astype(np.float32)
  41. grad = Grad(Net(raw_paddings, mode))
  42. output = grad(Tensor(x), Tensor(grads))
  43. print("=================output====================")
  44. print(output)
  45. def test_pad_infer():
  46. mode = 'CONSTANT'
  47. x = np.random.random(size=(2, 3)).astype(np.float32)
  48. raw_paddings = ((1, 1), (2, 2))
  49. net = Net(raw_paddings, mode)
  50. output = net(Tensor(x))
  51. print("=================output====================")
  52. print(output)