|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test image gradients """
- import numpy as np
- import pytest
-
- import mindspore.common.dtype as mstype
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.api import _executor
- from mindspore.common.api import ms_function
-
- context.set_context(device_target="Ascend")
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.image_gradients = nn.ImageGradients()
-
- @ms_function
- def construct(self, x):
- return self.image_gradients(x)
-
-
- def test_compile():
- # input shape 1 x 1 x 2 x 2
- image = Tensor(np.array([[[[1, 2], [3, 4]]]]), dtype=mstype.int32)
- net = Net()
- _executor.compile(net, image)
-
-
- def test_compile_multi_channel():
- # input shape 4 x 2 x 2 x 2
- dtype = mstype.int32
- image = Tensor(np.array([[[[1, 2], [3, 4]], [[5, 6], [7, 8]]],
- [[[3, 5], [7, 9]], [[11, 13], [15, 17]]],
- [[[5, 10], [15, 20]], [[25, 30], [35, 40]]],
- [[[10, 20], [30, 40]], [[50, 60], [70, 80]]]]), dtype=dtype)
- net = Net()
- _executor.compile(net, image)
-
-
- def test_invalid_5d_input():
- dtype = mstype.float32
- image = Tensor(np.random.random([4, 1, 16, 16, 1]), dtype=dtype)
- net = Net()
- with pytest.raises(ValueError):
- _executor.compile(net, image)
|