|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test Activations """
- import numpy as np
-
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.api import _executor
- from ..ut_filter import non_graph_engine
-
-
- class SoftmaxNet(nn.Cell):
- def __init__(self, dim):
- super(SoftmaxNet, self).__init__()
- self.softmax = nn.Softmax(dim)
-
- def construct(self, x):
- return self.softmax(x)
-
-
- @non_graph_engine
- def test_compile():
- net = SoftmaxNet(0)
- input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
- net(input_tensor)
-
-
- @non_graph_engine
- def test_compile_axis():
- net = SoftmaxNet(-1)
- prob = 355
- input_data = np.random.randn(4, 16, 1, 1).astype(np.float32) * prob
- input_tensor = Tensor(input_data)
- net(input_tensor)
-
-
- class LogSoftmaxNet(nn.Cell):
- def __init__(self, dim):
- super(LogSoftmaxNet, self).__init__()
- self.logsoftmax = nn.LogSoftmax(dim)
-
- def construct(self, x):
- return self.logsoftmax(x)
-
-
- @non_graph_engine
- def test_compile_logsoftmax():
- net = LogSoftmaxNet(0)
- input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]))
- net(input_tensor)
-
-
- class Net1(nn.Cell):
- def __init__(self):
- super(Net1, self).__init__()
- self.relu = nn.ReLU()
-
- def construct(self, x):
- return self.relu(x)
-
-
- def test_compile_relu():
- net = Net1()
- input_data = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
- _executor.compile(net, input_data)
-
-
- class Net_gelu(nn.Cell):
- def __init__(self):
- super(Net_gelu, self).__init__()
- self.gelu = nn.GELU()
-
- def construct(self, x):
- return self.gelu(x)
-
-
- def test_compile_gelu():
- net = Net_gelu()
- input_data = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
- _executor.compile(net, input_data)
-
-
- class NetLeakyReLU(nn.Cell):
- def __init__(self, alpha):
- super(NetLeakyReLU, self).__init__()
- self.leaky_relu = nn.LeakyReLU(alpha)
-
- def construct(self, x):
- return self.leaky_relu(x)
-
-
- def test_compile_leaky_relu():
- net = NetLeakyReLU(alpha=0.1)
- input_data = Tensor(np.array([[1.6, 0, 0.6], [6, 0, -6]], dtype=np.float32))
- _executor.compile(net, input_data)
|