You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_momentum.py 1.9 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test momentum """
  16. import numpy as np
  17. import mindspore.nn as nn
  18. from mindspore import Tensor, Parameter
  19. from mindspore.common.api import _executor
  20. from mindspore.nn import TrainOneStepCell, WithLossCell
  21. from mindspore.nn.optim import Momentum
  22. from mindspore.ops import operations as P
  23. class Net(nn.Cell):
  24. """ Net definition """
  25. def __init__(self):
  26. super(Net, self).__init__()
  27. self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
  28. self.bias = Parameter(Tensor(np.ones([10]).astype(np.float32)), name="bias")
  29. self.matmul = P.MatMul()
  30. self.biasAdd = P.BiasAdd()
  31. def construct(self, x):
  32. x = self.biasAdd(self.matmul(x, self.weight), self.bias)
  33. return x
  34. def test_momentum_compile():
  35. """ test_momentum_compile """
  36. inputs = Tensor(np.ones([1, 64]).astype(np.float32))
  37. label = Tensor(np.zeros([1, 10]).astype(np.float32))
  38. net = Net()
  39. net.set_train()
  40. loss = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
  41. optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
  42. net_with_loss = WithLossCell(net, loss)
  43. train_network = TrainOneStepCell(net_with_loss, optimizer)
  44. _executor.compile(train_network, inputs, label)