|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """test_mix_precision"""
- import numpy as np
-
- import mindspore.common.dtype as mstype
- import mindspore.nn as nn
- from mindspore import Tensor, context
- from mindspore.common import ParameterTuple
- from mindspore.common.api import _executor
- from mindspore.common.parameter import Parameter
- from mindspore.nn import Momentum
- from mindspore.nn import TrainOneStepCell, WithLossCell
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
- from mindspore.ops import functional as F
- from mindspore.train.parallel_utils import ParallelMode
- from tests.ops_common import convert
- from ....train_step_wrap import train_step_with_loss_warp
-
-
- class LeNet5(nn.Cell):
- """LeNet5"""
-
- def __init__(self):
- super(LeNet5, self).__init__()
- self.conv1 = nn.Conv2d(1, 6, 5, pad_mode='valid')
- self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
- self.fc1 = nn.Dense(16 * 5 * 5, 120)
- self.fc2 = nn.Dense(120, 84)
- self.fc3 = nn.Dense(84, 10)
- self.relu = nn.ReLU()
- self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
- self.flatten = P.Flatten()
-
- def construct(self, x):
- x = self.max_pool2d(self.relu(self.conv1(x)))
- x = self.max_pool2d(self.relu(self.conv2(x)))
- x = self.flatten(x)
- x = self.relu(self.fc1(x))
- x = self.relu(self.fc2(x))
- x = self.fc3(x)
- return x
-
-
- class NetForConcat(nn.Cell):
- def __init__(self):
- super(NetForConcat, self).__init__()
- self.concat = P.Concat()
- self.x1 = Tensor(np.zeros([1, 10]).astype(np.float32))
- self.x2 = Parameter(Tensor(np.zeros([1, 10]).astype(np.float32)), name='x2')
-
- def construct(self, x0):
- return self.concat((x0, self.x1, self.x2))
-
-
- def test_add_cast_flag():
- predict = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01)
- label = Tensor(np.zeros([1, 10]).astype(np.float32))
- net = LeNet5()
- net.to_float(mstype.float16)
- net.fc3.to_float(mstype.float32)
- net = train_step_with_loss_warp(net)
- net.set_train()
- _executor.compile(net, predict, label)
-
-
- def test_add_cast_flag_tensor():
- x1 = Tensor(np.zeros([1, 10]).astype(np.float32))
- net = NetForConcat()
- net.add_flags_recursive(fp16=True)
- net.set_train()
- _executor.compile(net, x1)
-
-
- def test_on_momentum():
- predict = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01)
- label = Tensor(np.zeros([1, 10]).astype(np.float32))
- net = LeNet5()
- net = train_step_with_loss_warp(net).to_float(mstype.float16)
- net.set_train()
- _executor.compile(net, predict, label)
-
-
- def test_data_parallel_with_cast():
- """test_data_parallel_with_cast"""
- predict = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01)
- label = Tensor(np.zeros([1, 10]).astype(np.float32))
- net = LeNet5()
- net.to_float(mstype.float16)
- net.fc3.to_float(mstype.float32)
- loss_fn = nn.SoftmaxCrossEntropyWithLogits()
-
- optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
- learning_rate=0.1,
- momentum=0.9)
- net = WithLossCell(net, loss_fn)
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True, device_num=8)
- net = TrainOneStepCell(net, optimizer)
-
- _executor.compile(net, predict, label)
- context.reset_auto_parallel_context()
-
-
- class NetForPReLU(nn.Cell):
- def __init__(self):
- super(NetForPReLU, self).__init__()
- self.prelu = nn.PReLU()
-
- def construct(self, x):
- return self.prelu(x)
-
-
- def test_nn_prelu():
- x = Tensor(np.ones([1, 16, 10, 10]).astype(np.float32) * 0.01)
- net = NetForPReLU().set_train()
- net.add_flags_recursive(fp16=True)
- _executor.compile(net, x)
-
-
- class NetForCast(nn.Cell):
- def __init__(self):
- super(NetForCast, self).__init__()
- self.concat = P.Concat()
- self.x1 = Tensor(1.0, mstype.float32)
-
- def construct(self, x0):
- x = self.x1 * x0
- return x
-
-
- def test_cast():
- x = Tensor(np.ones([1, 16, 10, 10]).astype(np.float32) * 0.01)
- net = NetForCast()
- net.add_flags_recursive(fp16=True)
- _executor.compile(net, x)
-
-
- class IRBlockZ(nn.Cell):
- def __init__(self, inplanes, planes):
- super(IRBlockZ, self).__init__()
- self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=1, pad_mode="same", group=1, has_bias=False,
- dilation=1)
- self.act_layer = nn.PReLU(planes)
-
- def construct(self, x):
- out = self.conv1(x)
- return self.act_layer(out)
-
-
- class GetParamGrad(nn.Cell):
- def __init__(self, network):
- super(GetParamGrad, self).__init__(auto_prefix=False)
- self.network = network
- self.weights = ParameterTuple(network.trainable_params())
- self.grad = C.GradOperation('grad',
- get_by_list=True,
- sens_param=True)
-
- def construct(self, data, sens):
- weights = self.weights
- return self.grad(self.network, weights)(data, sens)
-
-
- def test_grad_conv_prelu():
- shapes = [[64, 64, 112, 112]]
- outshape = [[64, 64, 112, 112]]
- net = IRBlockZ(inplanes=64, planes=64).add_flags_recursive(fp16=True)
- inputs = [convert(shp, dtype=np.float16) for shp in shapes]
- sens_shape = outshape[0]
- sens = convert(sens_shape, dtype=np.float16)
- all_inputs = inputs + [sens]
- net = GetParamGrad(net)
- net.set_train()
- net(*all_inputs)
-
-
- def test_dict_cast():
- class FirstNet(nn.Cell):
- def __init__(self):
- super(FirstNet, self).__init__()
- self.net = SecondNet()
- self.sub = P.Sub()
-
- def construct(self, tensor_a, tensor_b):
- a = F.mixed_precision_cast(mstype.float16, tensor_a)
- b = F.mixed_precision_cast(mstype.float16, tensor_b)
- c = self.sub(a, b)
- dictionary = {"key": a}
- result = self.net(c, key1=a, key2=dictionary)
- return result
-
- class SecondNet(nn.Cell):
- def __init__(self):
- super(SecondNet, self).__init__()
- self.add = P.TensorAdd()
-
- def construct(self, tensor_c, **kwargs):
- d = F.mixed_precision_cast(mstype.float16, tensor_c)
- dict_cast = F.mixed_precision_cast(mstype.float16, kwargs)
- e = self.add(d, dict_cast["key1"])
- f = self.add(e, dict_cast["key2"]["key"])
- return f
-
- x = Tensor(np.array([1, 2.5, 3.5]), mstype.float32)
- y = Tensor(np.array([4, 5.5, 6.5]), mstype.float32)
- net = FirstNet()
- net(x, y)
-
-
- def test_kwarg_cast():
- class FirstNet(nn.Cell):
- def __init__(self):
- super(FirstNet, self).__init__()
- self.net = SecondNet().add_flags_recursive(fp16=True)
- self.add = P.TensorAdd()
-
- def construct(self, tensor_a, tensor_b):
- tensor_c = self.add(tensor_a, tensor_b)
- dictionary = {"key": tensor_a}
- result = self.net(key1=tensor_c, key2=dictionary)
- return result
-
- class SecondNet(nn.Cell):
- def __init__(self):
- super(SecondNet, self).__init__()
- self.add = P.TensorAdd()
-
- def construct(self, key1=1, key2=2):
- tensor_d = self.add(key1, key2["key"])
- return tensor_d
-
- x = Tensor(np.array([1, 2.5, 3.5]), mstype.float32)
- y = Tensor(np.array([4, 5.5, 6.5]), mstype.float32)
- net = FirstNet()
- net(x, y)
|