|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test Dense """
- import numpy as np
-
- import mindspore.nn as nn
- from mindspore import Tensor
- from ..ut_filter import non_graph_engine
-
-
- class Net(nn.Cell):
- """Net definition"""
-
- def __init__(self,
- input_channels,
- output_channels,
- weight='normal',
- bias='zeros',
- has_bias=True):
- super(Net, self).__init__()
- self.fc = nn.Dense(input_channels,
- output_channels,
- weight,
- bias,
- has_bias)
-
- def construct(self, input_x):
- return self.fc(input_x)
-
-
- @non_graph_engine
- def test_compile():
- weight = Tensor(np.ones([12, 8], np.float32))
- bias = Tensor(np.ones([12], np.float32))
- net = Net(8, 12, weight=weight, bias=bias)
- input_data = Tensor(np.ones([1, 8], np.float32))
- # since simulator currently not support matMul
- output = net(input_data)
- print(output.asnumpy())
-
-
- @non_graph_engine
- def test_compile_nobias():
- weight = Tensor(np.ones([12, 8], np.float32))
- net = Net(8, 12, weight=weight, has_bias=False)
- input_data = Tensor(np.ones([1, 8], np.float32))
- # since simulator currently not support matMu
- # enable it when staging function is ready
- output = net(input_data)
- print(output.asnumpy())
|