|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- test assign add
- """
- import numpy as np
-
- import mindspore as ms
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor, Parameter
- from mindspore.common.initializer import initializer
- from mindspore.ops import operations as P
- from ..ut_filter import non_graph_engine
-
- context.set_context(mode=context.GRAPH_MODE)
-
-
- class Net(nn.Cell):
- """Net definition"""
-
- def __init__(self):
- super(Net, self).__init__()
- self.AssignAdd = P.AssignAdd()
- self.inputdata = Parameter(initializer(1, [1], ms.int64), name="global_step")
- print("inputdata: ", self.inputdata)
-
- def construct(self, x):
- out = self.AssignAdd(self.inputdata, x)
- return out
-
-
- @non_graph_engine
- def test_AssignAdd_1():
- """test AssignAdd 1"""
- context.set_context(mode=context.GRAPH_MODE)
- net = Net()
- x = Tensor(np.ones([1]).astype(np.int64) * 100)
-
- print("MyPrintResult dataX:", x)
- result = net(x)
- print("MyPrintResult data::", result)
- expect = np.ones([1]).astype(np.int64) * 101
- diff = result.asnumpy() - expect
-
- print("MyPrintExpect:", expect)
- print("MyPrintDiff:", diff)
- error = np.ones(shape=[1]) * 1.0e-3
- assert np.all(diff < error)
-
-
- @non_graph_engine
- def test_AssignAdd_2():
- """test AssignAdd 2"""
- context.set_context(mode=context.GRAPH_MODE)
- net = Net()
- x = Tensor(np.ones([1]).astype(np.int64) * 102)
-
- print("MyPrintResult dataX:", x)
- result = net(x)
- print("MyPrintResult data::", result.asnumpy())
- expect = np.ones([1]).astype(np.int64) * 103
- diff = result.asnumpy() - expect
-
- print("MyPrintExpect:", expect)
- print("MyPrintDiff:", diff)
- error = np.ones(shape=[1]) * 1.0e-3
- assert np.all(diff < error)
-
-
- class AssignAddNet(nn.Cell):
- """Net definition"""
-
- def __init__(self):
- super(AssignAddNet, self).__init__()
- self.AssignAdd = P.AssignAdd()
- self.inputdata = Parameter(initializer(1, [1], ms.float16), name="KIND_AUTOCAST_SCALAR_TO_TENSOR")
- self.one = 1
-
- def construct(self, ixt):
- z1 = self.AssignAdd(self.inputdata, self.one)
- return z1
-
-
- @non_graph_engine
- def test_assignadd_scalar_cast():
- net = AssignAddNet()
- x = Tensor(np.ones([1]).astype(np.int64) * 102)
- # _executor.compile(net, 1)
- _ = net(x)
|