|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- resnet50 example
- """
- import numpy as np
-
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
- from ..ut_filter import non_graph_engine
-
-
- def conv3x3(in_channels, out_channels, stride=1, padding=1):
- """3x3 convolution """
- weight = Tensor(np.ones([out_channels, in_channels, 3, 3]).astype(np.float32) * 0.01)
- return nn.Conv2d(in_channels, out_channels,
- kernel_size=3, stride=stride, padding=padding, weight_init=weight)
-
-
- def conv1x1(in_channels, out_channels, stride=1, padding=0):
- """1x1 convolution"""
- weight = Tensor(np.ones([out_channels, in_channels, 1, 1]).astype(np.float32) * 0.01)
- return nn.Conv2d(in_channels, out_channels,
- kernel_size=1, stride=stride, padding=padding, weight_init=weight)
-
-
- def bn_with_initialize(out_channels):
- shape = (out_channels)
- mean = Tensor(np.ones(shape).astype(np.float32) * 0.01)
- var = Tensor(np.ones(shape).astype(np.float32) * 0.01)
- beta = Tensor(np.ones(shape).astype(np.float32) * 0.01)
- gamma = Tensor(np.ones(shape).astype(np.float32) * 0.01)
- return nn.BatchNorm2d(num_features=out_channels,
- beta_init=beta,
- gamma_init=gamma,
- moving_mean_init=mean,
- moving_var_init=var)
-
-
- class ResidualBlock(nn.Cell):
- """
- residual Block
- """
- expansion = 4
-
- def __init__(self,
- in_channels,
- out_channels,
- stride=1,
- down_sample=False):
- super(ResidualBlock, self).__init__()
-
- out_chls = out_channels // self.expansion
- self.conv1 = conv1x1(in_channels, out_chls, stride=stride, padding=0)
- self.bn1 = bn_with_initialize(out_chls)
-
- self.conv2 = conv3x3(out_chls, out_chls, stride=1, padding=1)
- self.bn2 = bn_with_initialize(out_chls)
-
- self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
- self.bn3 = bn_with_initialize(out_channels)
-
- self.relu = nn.ReLU()
- self.downsample = down_sample
-
- self.conv_down_sample = conv1x1(in_channels, out_channels,
- stride=stride, padding=0)
- self.bn_down_sample = bn_with_initialize(out_channels)
- self.add = P.TensorAdd()
-
- def construct(self, x):
- """
- :param x:
- :return:
- """
- identity = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
-
- out = self.conv3(out)
- out = self.bn3(out)
-
- if self.downsample:
- identity = self.conv_down_sample(identity)
- identity = self.bn_down_sample(identity)
-
- out = self.add(out, identity)
- out = self.relu(out)
-
- return out
-
-
- class MakeLayer3(nn.Cell):
- """
- make resnet50 3 layers
- """
-
- def __init__(self, block, in_channels, out_channels, stride):
- super(MakeLayer3, self).__init__()
- self.block_down_sample = block(in_channels, out_channels,
- stride=stride, down_sample=True)
- self.block1 = block(out_channels, out_channels, stride=1)
- self.block2 = block(out_channels, out_channels, stride=1)
-
- def construct(self, x):
- x = self.block_down_sample(x)
- x = self.block1(x)
- x = self.block2(x)
-
- return x
-
-
- class MakeLayer4(nn.Cell):
- """
- make resnet50 4 layers
- """
-
- def __init__(self, block, in_channels, out_channels, stride):
- super(MakeLayer4, self).__init__()
- self.block_down_sample = block(in_channels, out_channels,
- stride=stride, down_sample=True)
- self.block1 = block(out_channels, out_channels, stride=1)
- self.block2 = block(out_channels, out_channels, stride=1)
- self.block3 = block(out_channels, out_channels, stride=1)
-
- def construct(self, x):
- x = self.block_down_sample(x)
- x = self.block1(x)
- x = self.block2(x)
- x = self.block3(x)
-
- return x
-
-
- class MakeLayer6(nn.Cell):
- """
- make resnet50 6 layers
-
- """
-
- def __init__(self, block, in_channels, out_channels, stride):
- super(MakeLayer6, self).__init__()
- self.block_down_sample = block(in_channels, out_channels,
- stride=stride, down_sample=True)
- self.block1 = block(out_channels, out_channels, stride=1)
- self.block2 = block(out_channels, out_channels, stride=1)
- self.block3 = block(out_channels, out_channels, stride=1)
- self.block4 = block(out_channels, out_channels, stride=1)
- self.block5 = block(out_channels, out_channels, stride=1)
-
- def construct(self, x):
- x = self.block_down_sample(x)
- x = self.block1(x)
- x = self.block2(x)
- x = self.block3(x)
- x = self.block4(x)
- x = self.block5(x)
-
- return x
-
-
- class ResNet50(nn.Cell):
- """
- resnet nn.Cell
- """
-
- def __init__(self, block, num_classes=100):
- super(ResNet50, self).__init__()
-
- weight_conv = Tensor(np.ones([64, 3, 7, 7]).astype(np.float32) * 0.01)
- self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, weight_init=weight_conv)
- self.bn1 = bn_with_initialize(64)
- self.relu = nn.ReLU()
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2)
-
- self.layer1 = MakeLayer3(
- block, in_channels=64, out_channels=256, stride=1)
- self.layer2 = MakeLayer4(
- block, in_channels=256, out_channels=512, stride=2)
- self.layer3 = MakeLayer6(
- block, in_channels=512, out_channels=1024, stride=2)
- self.layer4 = MakeLayer3(
- block, in_channels=1024, out_channels=2048, stride=2)
-
- self.avgpool = nn.AvgPool2d(7, 1)
- self.flatten = nn.Flatten()
-
- weight_fc = Tensor(np.ones([num_classes, 512 * block.expansion]).astype(np.float32) * 0.01)
- bias_fc = Tensor(np.ones([num_classes]).astype(np.float32) * 0.01)
- self.fc = nn.Dense(512 * block.expansion, num_classes, weight_init=weight_fc, bias_init=bias_fc)
-
- def construct(self, x):
- """
- :param x:
- :return:
- """
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool(x)
-
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
-
- x = self.avgpool(x)
- x = self.flatten(x)
- x = self.fc(x)
-
- return x
-
-
- def resnet50():
- return ResNet50(ResidualBlock, 10)
-
-
- @non_graph_engine
- def test_compile():
- net = resnet50()
- input_data = Tensor(np.ones([1, 3, 224, 224]).astype(np.float32) * 0.01)
-
- output = net(input_data)
- print(output.asnumpy())
|