|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing SlidingWindow in mindspore.dataset
- """
- import numpy as np
- import mindspore.dataset as ds
- import mindspore.dataset.text as text
-
- def test_sliding_window_string():
- """ test sliding_window with string type"""
- inputs = [["大", "家", "早", "上", "好"]]
- expect = np.array([['大', '家'], ['家', '早'], ['早', '上'], ['上', '好']])
-
- dataset = ds.NumpySlicesDataset(inputs, column_names=["text"], shuffle=False)
- dataset = dataset.map(input_columns=["text"], operations=text.SlidingWindow(2, 0))
-
- result = []
- for data in dataset.create_dict_iterator():
- for i in range(data['text'].shape[0]):
- result.append([])
- for j in range(data['text'].shape[1]):
- result[i].append(data['text'][i][j].decode('utf8'))
- result = np.array(result)
- np.testing.assert_array_equal(result, expect)
-
- def test_sliding_window_number():
- inputs = [1]
- expect = np.array([[1]])
-
- def gen(nums):
- yield (np.array(nums),)
-
- dataset = ds.GeneratorDataset(gen(inputs), column_names=["number"])
- dataset = dataset.map(input_columns=["number"], operations=text.SlidingWindow(1, -1))
-
- for data in dataset.create_dict_iterator():
- np.testing.assert_array_equal(data['number'], expect)
-
- def test_sliding_window_big_width():
- inputs = [[1, 2, 3, 4, 5]]
- expect = np.array([])
-
- dataset = ds.NumpySlicesDataset(inputs, column_names=["number"], shuffle=False)
- dataset = dataset.map(input_columns=["number"], operations=text.SlidingWindow(30, 0))
-
- for data in dataset.create_dict_iterator():
- np.testing.assert_array_equal(data['number'], expect)
-
- def test_sliding_window_exception():
- try:
- _ = text.SlidingWindow(0, 0)
- assert False
- except ValueError:
- pass
-
- try:
- _ = text.SlidingWindow("1", 0)
- assert False
- except TypeError:
- pass
-
- try:
- _ = text.SlidingWindow(1, "0")
- assert False
- except TypeError:
- pass
-
- try:
- inputs = [[1, 2, 3, 4, 5]]
- dataset = ds.NumpySlicesDataset(inputs, column_names=["text"], shuffle=False)
- dataset = dataset.map(input_columns=["text"], operations=text.SlidingWindow(3, -100))
- for _ in dataset.create_dict_iterator():
- pass
- assert False
- except RuntimeError as e:
- assert "axis supports 0 or -1 only for now." in str(e)
-
- try:
- inputs = ["aa", "bb", "cc"]
- dataset = ds.NumpySlicesDataset(inputs, column_names=["text"], shuffle=False)
- dataset = dataset.map(input_columns=["text"], operations=text.SlidingWindow(2, 0))
- for _ in dataset.create_dict_iterator():
- pass
- assert False
- except RuntimeError as e:
- assert "SlidingWindosOp supports 1D Tensors only for now." in str(e)
-
- if __name__ == '__main__':
- test_sliding_window_string()
- test_sliding_window_number()
- test_sliding_window_big_width()
- test_sliding_window_exception()
|