|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing fill op
- """
- import numpy as np
- import pytest
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.c_transforms as data_trans
-
-
- def test_fillop_basic():
- def gen():
- yield (np.array([4, 5, 6, 7], dtype=np.uint8),)
-
- data = ds.GeneratorDataset(gen, column_names=["col"])
- fill_op = data_trans.Fill(3)
-
- data = data.map(input_columns=["col"], operations=fill_op)
- expected = np.array([3, 3, 3, 3], dtype=np.uint8)
- for data_row in data:
- np.testing.assert_array_equal(data_row[0], expected)
-
-
- def test_fillop_down_type_cast():
- def gen():
- yield (np.array([4, 5, 6, 7], dtype=np.uint8),)
-
- data = ds.GeneratorDataset(gen, column_names=["col"])
- fill_op = data_trans.Fill(-3)
-
- data = data.map(input_columns=["col"], operations=fill_op)
- expected = np.array([253, 253, 253, 253], dtype=np.uint8)
- for data_row in data:
- np.testing.assert_array_equal(data_row[0], expected)
-
-
- def test_fillop_up_type_cast():
- def gen():
- yield (np.array([4, 5, 6, 7], dtype=np.float),)
-
- data = ds.GeneratorDataset(gen, column_names=["col"])
- fill_op = data_trans.Fill(3)
-
- data = data.map(input_columns=["col"], operations=fill_op)
- expected = np.array([3., 3., 3., 3.], dtype=np.float)
- for data_row in data:
- np.testing.assert_array_equal(data_row[0], expected)
-
-
- def test_fillop_string():
- def gen():
- yield (np.array(["45555", "45555"], dtype='S'),)
-
- data = ds.GeneratorDataset(gen, column_names=["col"])
- fill_op = data_trans.Fill("error")
-
- data = data.map(input_columns=["col"], operations=fill_op)
- expected = np.array(['error', 'error'], dtype='S')
- for data_row in data:
- np.testing.assert_array_equal(data_row[0], expected)
-
-
- def test_fillop_error_handling():
- def gen():
- yield (np.array([4, 4, 4, 4]),)
-
- data = ds.GeneratorDataset(gen, column_names=["col"])
- fill_op = data_trans.Fill("words")
- data = data.map(input_columns=["col"], operations=fill_op)
-
- with pytest.raises(RuntimeError) as error_info:
- for _ in data:
- pass
- assert "Types do not match" in str(error_info.value)
-
-
- if __name__ == "__main__":
- test_fillop_basic()
- test_fillop_up_type_cast()
- test_fillop_down_type_cast()
- test_fillop_string()
- test_fillop_error_handling()
|