- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing Equalize op in DE
- """
- import numpy as np
-
- import mindspore.dataset.engine as de
- import mindspore.dataset.transforms.vision.c_transforms as C
- import mindspore.dataset.transforms.vision.py_transforms as F
- from mindspore import log as logger
- from util import visualize_list, diff_mse, save_and_check_md5
-
- DATA_DIR = "../data/dataset/testImageNetData/train/"
-
- GENERATE_GOLDEN = False
-
- def test_equalize_py(plot=False):
- """
- Test Equalize py op
- """
- logger.info("Test Equalize")
-
- # Original Images
- ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
-
- transforms_original = F.ComposeOp([F.Decode(),
- F.Resize((224, 224)),
- F.ToTensor()])
-
- ds_original = ds.map(input_columns="image",
- operations=transforms_original())
-
- ds_original = ds_original.batch(512)
-
- for idx, (image, _) in enumerate(ds_original):
- if idx == 0:
- images_original = np.transpose(image, (0, 2, 3, 1))
- else:
- images_original = np.append(images_original,
- np.transpose(image, (0, 2, 3, 1)),
- axis=0)
-
- # Color Equalized Images
- ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
-
- transforms_equalize = F.ComposeOp([F.Decode(),
- F.Resize((224, 224)),
- F.Equalize(),
- F.ToTensor()])
-
- ds_equalize = ds.map(input_columns="image",
- operations=transforms_equalize())
-
- ds_equalize = ds_equalize.batch(512)
-
- for idx, (image, _) in enumerate(ds_equalize):
- if idx == 0:
- images_equalize = np.transpose(image, (0, 2, 3, 1))
- else:
- images_equalize = np.append(images_equalize,
- np.transpose(image, (0, 2, 3, 1)),
- axis=0)
-
- num_samples = images_original.shape[0]
- mse = np.zeros(num_samples)
- for i in range(num_samples):
- mse[i] = diff_mse(images_equalize[i], images_original[i])
- logger.info("MSE= {}".format(str(np.mean(mse))))
-
- if plot:
- visualize_list(images_original, images_equalize)
-
-
- def test_equalize_c(plot=False):
- """
- Test Equalize Cpp op
- """
- logger.info("Test Equalize cpp op")
-
- # Original Images
- ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
-
- transforms_original = [C.Decode(), C.Resize(size=[224, 224])]
-
- ds_original = ds.map(input_columns="image",
- operations=transforms_original)
-
- ds_original = ds_original.batch(512)
-
- for idx, (image, _) in enumerate(ds_original):
- if idx == 0:
- images_original = image
- else:
- images_original = np.append(images_original,
- image,
- axis=0)
-
- # Equalize Images
- ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
-
- transform_equalize = [C.Decode(), C.Resize(size=[224, 224]),
- C.Equalize()]
-
- ds_equalize = ds.map(input_columns="image",
- operations=transform_equalize)
-
- ds_equalize = ds_equalize.batch(512)
-
- for idx, (image, _) in enumerate(ds_equalize):
- if idx == 0:
- images_equalize = image
- else:
- images_equalize = np.append(images_equalize,
- image,
- axis=0)
- if plot:
- visualize_list(images_original, images_equalize)
-
- num_samples = images_original.shape[0]
- mse = np.zeros(num_samples)
- for i in range(num_samples):
- mse[i] = diff_mse(images_equalize[i], images_original[i])
- logger.info("MSE= {}".format(str(np.mean(mse))))
-
-
- def test_equalize_py_c(plot=False):
- """
- Test Equalize Cpp op and python op
- """
- logger.info("Test Equalize cpp and python op")
-
- # equalize Images in cpp
- ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
- ds = ds.map(input_columns=["image"],
- operations=[C.Decode(), C.Resize((224, 224))])
-
- ds_c_equalize = ds.map(input_columns="image",
- operations=C.Equalize())
-
- ds_c_equalize = ds_c_equalize.batch(512)
-
- for idx, (image, _) in enumerate(ds_c_equalize):
- if idx == 0:
- images_c_equalize = image
- else:
- images_c_equalize = np.append(images_c_equalize,
- image,
- axis=0)
-
- # Equalize images in python
- ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
- ds = ds.map(input_columns=["image"],
- operations=[C.Decode(), C.Resize((224, 224))])
-
- transforms_p_equalize = F.ComposeOp([lambda img: img.astype(np.uint8),
- F.ToPIL(),
- F.Equalize(),
- np.array])
-
- ds_p_equalize = ds.map(input_columns="image",
- operations=transforms_p_equalize())
-
- ds_p_equalize = ds_p_equalize.batch(512)
-
- for idx, (image, _) in enumerate(ds_p_equalize):
- if idx == 0:
- images_p_equalize = image
- else:
- images_p_equalize = np.append(images_p_equalize,
- image,
- axis=0)
-
- num_samples = images_c_equalize.shape[0]
- mse = np.zeros(num_samples)
- for i in range(num_samples):
- mse[i] = diff_mse(images_p_equalize[i], images_c_equalize[i])
- logger.info("MSE= {}".format(str(np.mean(mse))))
-
- if plot:
- visualize_list(images_c_equalize, images_p_equalize, visualize_mode=2)
-
-
- def test_equalize_one_channel():
- """
- Test Equalize cpp op with one channel image
- """
- logger.info("Test Equalize C Op With One Channel Images")
-
- c_op = C.Equalize()
-
- try:
- ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
- ds = ds.map(input_columns=["image"],
- operations=[C.Decode(),
- C.Resize((224, 224)),
- lambda img: np.array(img[:, :, 0])])
-
- ds.map(input_columns="image",
- operations=c_op)
-
- except RuntimeError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "The shape" in str(e)
-
-
- def test_equalize_md5_py():
- """
- Test Equalize py op with md5 check
- """
- logger.info("Test Equalize")
-
- # First dataset
- data1 = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
- transforms = F.ComposeOp([F.Decode(),
- F.Equalize(),
- F.ToTensor()])
-
- data1 = data1.map(input_columns="image", operations=transforms())
- # Compare with expected md5 from images
- filename = "equalize_01_result.npz"
- save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_equalize_md5_c():
- """
- Test Equalize cpp op with md5 check
- """
- logger.info("Test Equalize cpp op with md5 check")
-
- # Generate dataset
- ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
-
- transforms_equalize = [C.Decode(),
- C.Resize(size=[224, 224]),
- C.Equalize(),
- F.ToTensor()]
-
- data = ds.map(input_columns="image", operations=transforms_equalize)
- # Compare with expected md5 from images
- filename = "equalize_01_result_c.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
-
- if __name__ == "__main__":
- test_equalize_py(plot=False)
- test_equalize_c(plot=False)
- test_equalize_py_c(plot=False)
- test_equalize_one_channel()
- test_equalize_md5_py()
- test_equalize_md5_c()
-
|