|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Test Mnist dataset operators
- """
- import os
- import pytest
- import numpy as np
- import matplotlib.pyplot as plt
- import mindspore.dataset as ds
- from mindspore import log as logger
-
- DATA_DIR = "../data/dataset/testMnistData"
-
-
- def load_mnist(path):
- """
- load Mnist data
- """
- labels_path = os.path.join(path, 't10k-labels-idx1-ubyte')
- images_path = os.path.join(path, 't10k-images-idx3-ubyte')
- with open(labels_path, 'rb') as lbpath:
- lbpath.read(8)
- labels = np.fromfile(lbpath, dtype=np.uint8)
- with open(images_path, 'rb') as imgpath:
- imgpath.read(16)
- images = np.fromfile(imgpath, dtype=np.uint8)
- images = images.reshape(-1, 28, 28, 1)
- images[images > 0] = 255 # Perform binarization to maintain consistency with our API
- return images, labels
-
-
- def visualize_dataset(images, labels):
- """
- Helper function to visualize the dataset samples
- """
- num_samples = len(images)
- for i in range(num_samples):
- plt.subplot(1, num_samples, i + 1)
- plt.imshow(images[i].squeeze(), cmap=plt.cm.gray)
- plt.title(labels[i])
- plt.show()
-
-
- def test_mnist_content_check():
- """
- Validate MnistDataset image readings
- """
- logger.info("Test MnistDataset Op with content check")
- data1 = ds.MnistDataset(DATA_DIR, num_samples=100, shuffle=False)
- images, labels = load_mnist(DATA_DIR)
- num_iter = 0
- # in this example, each dictionary has keys "image" and "label"
- image_list, label_list = [], []
- for i, data in enumerate(data1.create_dict_iterator()):
- image_list.append(data["image"])
- label_list.append("label {}".format(data["label"]))
- np.testing.assert_array_equal(data["image"], images[i])
- np.testing.assert_array_equal(data["label"], labels[i])
- num_iter += 1
- assert num_iter == 100
-
-
- def test_mnist_basic():
- """
- Validate MnistDataset
- """
- logger.info("Test MnistDataset Op")
-
- # case 1: test loading whole dataset
- data1 = ds.MnistDataset(DATA_DIR)
- num_iter1 = 0
- for _ in data1.create_dict_iterator():
- num_iter1 += 1
- assert num_iter1 == 10000
-
- # case 2: test num_samples
- data2 = ds.MnistDataset(DATA_DIR, num_samples=500)
- num_iter2 = 0
- for _ in data2.create_dict_iterator():
- num_iter2 += 1
- assert num_iter2 == 500
-
- # case 3: test repeat
- data3 = ds.MnistDataset(DATA_DIR, num_samples=200)
- data3 = data3.repeat(5)
- num_iter3 = 0
- for _ in data3.create_dict_iterator():
- num_iter3 += 1
- assert num_iter3 == 1000
-
- # case 4: test batch with drop_remainder=False
- data4 = ds.MnistDataset(DATA_DIR, num_samples=100)
- assert data4.get_dataset_size() == 100
- assert data4.get_batch_size() == 1
- data4 = data4.batch(batch_size=7) # drop_remainder is default to be False
- assert data4.get_dataset_size() == 15
- assert data4.get_batch_size() == 7
- num_iter4 = 0
- for _ in data4.create_dict_iterator():
- num_iter4 += 1
- assert num_iter4 == 15
-
- # case 5: test batch with drop_remainder=True
- data5 = ds.MnistDataset(DATA_DIR, num_samples=100)
- assert data5.get_dataset_size() == 100
- assert data5.get_batch_size() == 1
- data5 = data5.batch(batch_size=7, drop_remainder=True) # the rest of incomplete batch will be dropped
- assert data5.get_dataset_size() == 14
- assert data5.get_batch_size() == 7
- num_iter5 = 0
- for _ in data5.create_dict_iterator():
- num_iter5 += 1
- assert num_iter5 == 14
-
-
- def test_mnist_pk_sampler():
- """
- Test MnistDataset with PKSampler
- """
- logger.info("Test MnistDataset Op with PKSampler")
- golden = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4,
- 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9]
- sampler = ds.PKSampler(3)
- data = ds.MnistDataset(DATA_DIR, sampler=sampler)
- num_iter = 0
- label_list = []
- for item in data.create_dict_iterator():
- label_list.append(item["label"])
- num_iter += 1
- np.testing.assert_array_equal(golden, label_list)
- assert num_iter == 30
-
-
- def test_mnist_sequential_sampler():
- """
- Test MnistDataset with SequentialSampler
- """
- logger.info("Test MnistDataset Op with SequentialSampler")
- num_samples = 50
- sampler = ds.SequentialSampler(num_samples=num_samples)
- data1 = ds.MnistDataset(DATA_DIR, sampler=sampler)
- data2 = ds.MnistDataset(DATA_DIR, shuffle=False, num_samples=num_samples)
- label_list1, label_list2 = [], []
- num_iter = 0
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- label_list1.append(item1["label"])
- label_list2.append(item2["label"])
- num_iter += 1
- np.testing.assert_array_equal(label_list1, label_list2)
- assert num_iter == num_samples
-
-
- def test_mnist_exception():
- """
- Test error cases for MnistDataset
- """
- logger.info("Test error cases for MnistDataset")
- error_msg_1 = "sampler and shuffle cannot be specified at the same time"
- with pytest.raises(RuntimeError, match=error_msg_1):
- ds.MnistDataset(DATA_DIR, shuffle=False, sampler=ds.PKSampler(3))
-
- error_msg_2 = "sampler and sharding cannot be specified at the same time"
- with pytest.raises(RuntimeError, match=error_msg_2):
- ds.MnistDataset(DATA_DIR, sampler=ds.PKSampler(3), num_shards=2, shard_id=0)
-
- error_msg_3 = "num_shards is specified and currently requires shard_id as well"
- with pytest.raises(RuntimeError, match=error_msg_3):
- ds.MnistDataset(DATA_DIR, num_shards=10)
-
- error_msg_4 = "shard_id is specified but num_shards is not"
- with pytest.raises(RuntimeError, match=error_msg_4):
- ds.MnistDataset(DATA_DIR, shard_id=0)
-
- error_msg_5 = "Input shard_id is not within the required interval"
- with pytest.raises(ValueError, match=error_msg_5):
- ds.MnistDataset(DATA_DIR, num_shards=5, shard_id=-1)
- with pytest.raises(ValueError, match=error_msg_5):
- ds.MnistDataset(DATA_DIR, num_shards=5, shard_id=5)
- with pytest.raises(ValueError, match=error_msg_5):
- ds.MnistDataset(DATA_DIR, num_shards=2, shard_id=5)
-
- error_msg_6 = "num_parallel_workers exceeds"
- with pytest.raises(ValueError, match=error_msg_6):
- ds.MnistDataset(DATA_DIR, shuffle=False, num_parallel_workers=0)
- with pytest.raises(ValueError, match=error_msg_6):
- ds.MnistDataset(DATA_DIR, shuffle=False, num_parallel_workers=65)
- with pytest.raises(ValueError, match=error_msg_6):
- ds.MnistDataset(DATA_DIR, shuffle=False, num_parallel_workers=-2)
-
- error_msg_7 = "Argument shard_id"
- with pytest.raises(TypeError, match=error_msg_7):
- ds.MnistDataset(DATA_DIR, num_shards=2, shard_id="0")
-
-
- def test_mnist_visualize(plot=False):
- """
- Visualize MnistDataset results
- """
- logger.info("Test MnistDataset visualization")
-
- data1 = ds.MnistDataset(DATA_DIR, num_samples=10, shuffle=False)
- num_iter = 0
- image_list, label_list = [], []
- for item in data1.create_dict_iterator():
- image = item["image"]
- label = item["label"]
- image_list.append(image)
- label_list.append("label {}".format(label))
- assert isinstance(image, np.ndarray)
- assert image.shape == (28, 28, 1)
- assert image.dtype == np.uint8
- assert label.dtype == np.uint32
- num_iter += 1
- assert num_iter == 10
- if plot:
- visualize_dataset(image_list, label_list)
-
-
- if __name__ == '__main__':
- test_mnist_content_check()
- test_mnist_basic()
- test_mnist_pk_sampler()
- test_mnist_sequential_sampler()
- test_mnist_exception()
- test_mnist_visualize(plot=True)
|