You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_datasets_celeba.py 3.7 kB

5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798
  1. # Copyright 2020 Huawei Technologies Co., Ltd.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import mindspore.dataset as ds
  15. import mindspore.dataset.transforms.vision.c_transforms as vision
  16. from mindspore import log as logger
  17. from mindspore.dataset.transforms.vision import Inter
  18. DATA_DIR = "../data/dataset/testCelebAData/"
  19. def test_celeba_dataset_label():
  20. data = ds.CelebADataset(DATA_DIR, decode=True, shuffle=False)
  21. expect_labels = [
  22. [0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1,
  23. 0, 0, 1],
  24. [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
  25. 0, 0, 1]]
  26. count = 0
  27. for item in data.create_dict_iterator():
  28. logger.info("----------image--------")
  29. logger.info(item["image"])
  30. logger.info("----------attr--------")
  31. logger.info(item["attr"])
  32. for index in range(len(expect_labels[count])):
  33. assert item["attr"][index] == expect_labels[count][index]
  34. count = count + 1
  35. assert count == 2
  36. def test_celeba_dataset_op():
  37. data = ds.CelebADataset(DATA_DIR, decode=True, num_shards=1, shard_id=0)
  38. crop_size = (80, 80)
  39. resize_size = (24, 24)
  40. # define map operations
  41. data = data.repeat(2)
  42. center_crop = vision.CenterCrop(crop_size)
  43. resize_op = vision.Resize(resize_size, Inter.LINEAR) # Bilinear mode
  44. data = data.map(input_columns=["image"], operations=center_crop)
  45. data = data.map(input_columns=["image"], operations=resize_op)
  46. count = 0
  47. for item in data.create_dict_iterator():
  48. logger.info("----------image--------")
  49. logger.info(item["image"])
  50. count = count + 1
  51. assert count == 4
  52. def test_celeba_dataset_ext():
  53. ext = [".JPEG"]
  54. data = ds.CelebADataset(DATA_DIR, decode=True, extensions=ext)
  55. expect_labels = [0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1,
  56. 0, 1, 0, 1, 0, 0, 1],
  57. count = 0
  58. for item in data.create_dict_iterator():
  59. logger.info("----------image--------")
  60. logger.info(item["image"])
  61. logger.info("----------attr--------")
  62. logger.info(item["attr"])
  63. for index in range(len(expect_labels[count])):
  64. assert item["attr"][index] == expect_labels[count][index]
  65. count = count + 1
  66. assert count == 1
  67. def test_celeba_dataset_distribute():
  68. data = ds.CelebADataset(DATA_DIR, decode=True, num_shards=2, shard_id=0)
  69. count = 0
  70. for item in data.create_dict_iterator():
  71. logger.info("----------image--------")
  72. logger.info(item["image"])
  73. logger.info("----------attr--------")
  74. logger.info(item["attr"])
  75. count = count + 1
  76. assert count == 1
  77. def test_celeba_get_dataset_size():
  78. data = ds.CelebADataset(DATA_DIR, decode=True, shuffle=False)
  79. size = data.get_dataset_size()
  80. assert size == 2
  81. if __name__ == '__main__':
  82. test_celeba_dataset_label()
  83. test_celeba_dataset_op()
  84. test_celeba_dataset_ext()
  85. test_celeba_dataset_distribute()
  86. test_celeba_get_dataset_size()