You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 4.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train_imagenet."""
  16. import os
  17. import argparse
  18. import random
  19. import numpy as np
  20. from dataset import create_dataset
  21. from lr_generator import get_lr
  22. from config import config
  23. from mindspore import context
  24. from mindspore import Tensor
  25. from mindspore.model_zoo.resnet import resnet50
  26. from mindspore.parallel._auto_parallel_context import auto_parallel_context
  27. from mindspore.nn.optim.momentum import Momentum
  28. from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
  29. from mindspore.train.model import Model, ParallelMode
  30. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  31. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  32. import mindspore.dataset.engine as de
  33. from mindspore.communication.management import init
  34. random.seed(1)
  35. np.random.seed(1)
  36. de.config.set_seed(1)
  37. parser = argparse.ArgumentParser(description='Image classification')
  38. parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
  39. parser.add_argument('--device_num', type=int, default=1, help='Device num.')
  40. parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
  41. parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
  42. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  43. args_opt = parser.parse_args()
  44. device_id = int(os.getenv('DEVICE_ID'))
  45. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False)
  46. context.set_context(enable_task_sink=True, device_id=device_id)
  47. context.set_context(enable_loop_sink=True)
  48. context.set_context(enable_mem_reuse=True)
  49. if __name__ == '__main__':
  50. if args_opt.do_eval:
  51. context.set_context(enable_hccl=False)
  52. else:
  53. if args_opt.run_distribute:
  54. context.set_context(enable_hccl=True)
  55. context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
  56. mirror_mean=True)
  57. auto_parallel_context().set_all_reduce_fusion_split_indices([107, 160])
  58. init()
  59. else:
  60. context.set_context(enable_hccl=False)
  61. epoch_size = config.epoch_size
  62. net = resnet50(class_num=config.class_num)
  63. loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
  64. if args_opt.do_train:
  65. dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True,
  66. repeat_num=epoch_size, batch_size=config.batch_size)
  67. step_size = dataset.get_dataset_size()
  68. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  69. lr = Tensor(get_lr(global_step=0, lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
  70. warmup_epochs=config.warmup_epochs, total_epochs=epoch_size, steps_per_epoch=step_size,
  71. lr_decay_mode='poly'))
  72. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
  73. config.weight_decay, config.loss_scale)
  74. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'})
  75. time_cb = TimeMonitor(data_size=step_size)
  76. loss_cb = LossMonitor()
  77. cb = [time_cb, loss_cb]
  78. if config.save_checkpoint:
  79. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps,
  80. keep_checkpoint_max=config.keep_checkpoint_max)
  81. ckpt_cb = ModelCheckpoint(prefix="resnet", directory=config.save_checkpoint_path, config=config_ck)
  82. cb += [ckpt_cb]
  83. model.train(epoch_size, dataset, callbacks=cb)