You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_ops.py 44 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test ops """
  16. import functools
  17. import numpy as np
  18. from mindspore import ops, Parameter, context
  19. from mindspore.ops import functional as F
  20. from mindspore.ops import operations as P
  21. from mindspore.ops.operations import _grad_ops as G
  22. import mindspore.ops.composite as C
  23. import mindspore.nn as nn
  24. from mindspore import Tensor
  25. from mindspore.common import dtype as mstype
  26. from ..ut_filter import non_graph_engine
  27. from ....mindspore_test_framework.mindspore_test import mindspore_test
  28. from ....mindspore_test_framework.pipeline.forward.compile_forward \
  29. import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
  30. pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  31. from ....mindspore_test_framework.pipeline.gradient.compile_gradient \
  32. import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
  33. class InputBackward(nn.Cell):
  34. def __init__(self, network):
  35. super(InputBackward, self).__init__()
  36. self.network = network
  37. self.network.set_train()
  38. self.grad = C.grad_all_with_sens
  39. def construct(self, x1, x2, x3, sens):
  40. return self.grad(self.network)(x1, x2, x3, sens)
  41. class NetForTupleInput(nn.Cell):
  42. def __init__(self, op):
  43. super(NetForTupleInput, self).__init__()
  44. self.op = op
  45. def construct(self, x1, x2):
  46. return self.op((x1, x2))
  47. class StridedSlicessdNet(nn.Cell):
  48. def __init__(self):
  49. super(StridedSlicessdNet, self).__init__()
  50. self.rank = P.Rank()
  51. def construct(self, x1):
  52. return P.StridedSlice(1, 1, 0, self.rank(x1), 0)(x1, (0, 0), (0, 0), (1, 1))
  53. class NetForConcat(nn.Cell):
  54. def __init__(self):
  55. super(NetForConcat, self).__init__()
  56. self.concat = P.Concat()
  57. def construct(self, x1):
  58. return self.concat((x1, x1))
  59. class NetForConcat1(nn.Cell):
  60. def __init__(self):
  61. super(NetForConcat1, self).__init__()
  62. self.concat = P.Concat()
  63. def construct(self, x1, x2):
  64. return self.concat((x1, x2))
  65. class NetForPackInput(nn.Cell):
  66. def __init__(self, op):
  67. super(NetForPackInput, self).__init__()
  68. self.op = op
  69. self.mul = P.Mul()
  70. def construct(self, *args):
  71. t = ()
  72. for i in range(len(args)):
  73. t = t + (self.mul(args[i], args[i]),)
  74. return self.op(t)
  75. class NetForUnpackInput(nn.Cell):
  76. def __init__(self, op):
  77. super(NetForUnpackInput, self).__init__()
  78. self.op = op
  79. self.mul = P.Mul()
  80. def construct(self, x1):
  81. return self.op((self.mul(x1, x1)))
  82. class NetForFlatten(nn.Cell):
  83. def __init__(self):
  84. super(NetForFlatten, self).__init__()
  85. self.flatten = P.Flatten()
  86. def construct(self, x, y):
  87. return self.flatten(x) + y
  88. class NetForFlatten0D(nn.Cell):
  89. def __init__(self):
  90. super(NetForFlatten0D, self).__init__()
  91. self.flatten = P.Flatten()
  92. def construct(self, x):
  93. return self.flatten(x)
  94. class ArgmaxNet(nn.Cell):
  95. def __init__(self):
  96. super(ArgmaxNet, self).__init__()
  97. self.argmax = P.Argmax(axis=1)
  98. def construct(self, input):
  99. return self.argmax(input)
  100. class ArgminNet(nn.Cell):
  101. def __init__(self):
  102. super(ArgminNet, self).__init__()
  103. self.argmin = P.Argmin(axis=1)
  104. def construct(self, input):
  105. return self.argmin(input)
  106. class CumSumNet(nn.Cell):
  107. def __init__(self):
  108. super(CumSumNet, self).__init__()
  109. self.cumsum = P.CumSum()
  110. self.axis = 1
  111. def construct(self, input):
  112. return self.cumsum(input, self.axis)
  113. class SummaryNet(nn.Cell):
  114. def __init__(self):
  115. super(SummaryNet, self).__init__()
  116. self.s = P.ScalarSummary()
  117. self.add = P.TensorAdd()
  118. def construct(self, x, y):
  119. self.s("x1", x)
  120. return self.add(x, y)
  121. class HistogramSummaryNet(nn.Cell):
  122. def __init__(self):
  123. super(HistogramSummaryNet, self).__init__()
  124. self.summary = P.HistogramSummary()
  125. self.add = P.TensorAdd()
  126. def construct(self, x, y):
  127. out = self.add(x, y)
  128. string_in = "out"
  129. self.summary(string_in, out)
  130. return out
  131. class ScatterMax(nn.Cell):
  132. """ScatterMax net definition"""
  133. def __init__(self):
  134. super(ScatterMax, self).__init__()
  135. self.scatter_max = P.ScatterMax()
  136. self.ref = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], np.float32)), name="ref")
  137. def construct(self, indices, updates):
  138. out = self.scatter_max(self.ref, indices, updates)
  139. return out
  140. test_case_math_ops = [
  141. ('Neg', {
  142. 'block': P.Neg(),
  143. 'desc_inputs': [[1, 3, 4, 4]],
  144. 'desc_bprop': [[1, 3, 4, 4]]}),
  145. ('Sub', {
  146. 'block': P.Sub(),
  147. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  148. 'desc_bprop': [[2, 3, 3, 5]]}),
  149. ('TensorAdd', {
  150. 'block': P.TensorAdd(),
  151. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  152. 'desc_bprop': [[2, 3, 3, 5]]}),
  153. ('Mul0', {
  154. 'block': P.Mul(),
  155. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  156. 'desc_bprop': [[2, 3, 3, 5]]}),
  157. ('Mul1', {
  158. 'block': P.Mul(),
  159. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  160. 'desc_bprop': [[2, 3, 3, 5]]}),
  161. ('Mul2', {
  162. 'block': P.Mul(),
  163. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  164. 'desc_bprop': [[2, 3, 3, 5]],
  165. 'skip': ['backward']}),
  166. ('Mul3', {
  167. 'block': P.Mul(),
  168. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  169. 'desc_bprop': [[2, 3, 3, 5]],
  170. 'skip': ['backward']}),
  171. ('Mul4', {
  172. 'block': P.Mul(),
  173. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  174. 'desc_bprop': [[2, 3, 3, 5]],
  175. 'skip': ['backward']}),
  176. ('Add0', {
  177. 'block': P.TensorAdd(),
  178. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  179. 'desc_bprop': [[2, 3, 3, 5]]}),
  180. ('Add1', {
  181. 'block': P.TensorAdd(),
  182. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  183. 'desc_bprop': [[2, 3, 3, 5]],
  184. 'skip': ['backward']}),
  185. ('Add2', {
  186. 'block': P.TensorAdd(),
  187. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  188. 'desc_bprop': [[2, 3, 3, 5]],
  189. 'skip': ['backward']}),
  190. ('Add3', {
  191. 'block': P.TensorAdd(),
  192. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  193. 'desc_bprop': [[2, 3, 3, 5]],
  194. 'skip': ['backward']}),
  195. ('Add4', {
  196. 'block': P.TensorAdd(),
  197. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  198. 'desc_bprop': [[2, 3, 3, 5]],
  199. 'skip': ['backward']}),
  200. ('Minimum', {
  201. 'block': P.Minimum(),
  202. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  203. 'desc_bprop': [[2, 3, 3, 5]]}),
  204. ('Pow_0', {
  205. 'block': P.Pow(),
  206. 'desc_const': [2.0],
  207. 'desc_inputs': [[2, 3, 3, 5]],
  208. 'desc_bprop': [[2, 3, 3, 5]]}),
  209. ('Pow_1', {
  210. 'block': P.Pow(),
  211. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  212. 'desc_bprop': [[2, 3, 3, 5]]}),
  213. ('Exp', {
  214. 'block': P.Exp(),
  215. 'desc_inputs': [[2, 3]],
  216. 'desc_bprop': [[2, 3]]}),
  217. ('Erf', {
  218. 'block': P.Erf(),
  219. 'desc_inputs': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))],
  220. 'desc_bprop': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))]}),
  221. ('Floor', {
  222. 'block': P.Floor(),
  223. 'desc_inputs': [[2, 512, 56, 56]],
  224. 'desc_bprop': [[2, 512, 56, 56]],
  225. 'skip': ['backward']}),
  226. ('ACos', {
  227. 'block': P.ACos(),
  228. 'desc_inputs': [[2, 3]],
  229. 'desc_bprop': [[2, 3]]}),
  230. ('Acosh', {
  231. 'block': P.Acosh(),
  232. 'desc_inputs': [[3, 4, 5]],
  233. 'desc_bprop': [[3, 4, 5]]}),
  234. ('Sin', {
  235. 'block': P.Sin(),
  236. 'desc_inputs': [[2, 3]],
  237. 'desc_bprop': [[2, 3]]}),
  238. ('Reciprocal', {
  239. 'block': P.Reciprocal(),
  240. 'desc_inputs': [[2, 3, 3, 5]],
  241. 'desc_bprop': [[2, 3, 3, 5]]}),
  242. ('Minimum_0', {
  243. 'block': P.Minimum(),
  244. 'desc_inputs': [[2, 3, 3, 5], [3, 3, 5]],
  245. 'desc_bprop': [[2, 3, 3, 5]]}),
  246. ('Maximum', {
  247. 'block': P.Maximum(),
  248. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  249. 'desc_bprop': [[2, 3, 3, 5]]}),
  250. ('Maximum_0', {
  251. 'block': P.Maximum(),
  252. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  253. 'desc_bprop': [[2, 3, 3, 5]]}),
  254. ('MaximumGrad', {
  255. 'block': G.MaximumGrad(),
  256. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  257. 'skip': ['backward']}),
  258. ('MinimumGrad', {
  259. 'block': G.MinimumGrad(),
  260. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  261. 'skip': ['backward']}),
  262. ('StridedSlice', {
  263. 'block': P.StridedSlice(),
  264. 'desc_const': [(0, 1, 2, 1),
  265. (2, 3, 3, 4),
  266. (1, 1, 1, 1)],
  267. 'desc_inputs': [[2, 3, 3, 5]],
  268. 'desc_bprop': [[2, 2, 1, 3]]}),
  269. ('Slice_1', {
  270. 'block': P.Slice(),
  271. 'desc_const': [(0, 1, 2, 1),
  272. (1, 1, 1, 2)],
  273. 'desc_inputs': [[2, 3, 3, 5]],
  274. 'desc_bprop': [[1, 1, 1, 2]]}),
  275. ('StridedSliceGrad', {
  276. 'block': G.StridedSliceGrad(),
  277. 'desc_const': [(64, 1, 1024),
  278. (0, 1, 0),
  279. (64, 2, 1024),
  280. (1, 1, 1)],
  281. 'desc_inputs': [[64, 128, 1024]],
  282. 'skip': ['backward']}),
  283. ('RandomChoiceWithMask', {
  284. 'block': P.RandomChoiceWithMask(256),
  285. 'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
  286. 'desc_bprop': [[256, 4], [256, 4]],
  287. 'skip': ['backward']}),
  288. ('LessEqual', {
  289. 'block': P.LessEqual(),
  290. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  291. Tensor(np.random.rand(4).astype(np.float16))],
  292. 'skip': ['backward']}),
  293. ('Less', {
  294. 'block': P.Less(),
  295. 'desc_inputs': [[2, 1, 4, 5], [2, 1, 4, 5]],
  296. 'desc_bprop': [Tensor(np.zeros((2, 1, 4, 5), np.bool_))],
  297. 'skip': ['backward']}),
  298. ('RealDiv_0', {
  299. 'block': P.RealDiv(),
  300. 'desc_const': [Tensor(2048.0), Tensor(0.0)],
  301. 'desc_inputs': [],
  302. 'skip': ['backward']}),
  303. ('RealDiv', {
  304. 'block': P.RealDiv(),
  305. 'desc_inputs': [[4], Tensor(np.ones(4).astype(np.float32))],
  306. 'desc_bprop': [[4]]}),
  307. ('RealDiv_1', {
  308. 'block': P.RealDiv(),
  309. 'desc_inputs': [[512, 1024], [512, 1024]],
  310. 'desc_bprop': [[512, 1024]]}),
  311. ('FloorDiv', {
  312. 'block': P.FloorDiv(),
  313. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  314. Tensor(np.random.rand(4).astype(np.float16))],
  315. 'skip': ['backward']}),
  316. ('FloorMod', {
  317. 'block': P.FloorMod(),
  318. 'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
  319. 'desc_bprop': [[2, 3, 4, 5]]}),
  320. ('identity', {
  321. 'block': ops.functional.identity,
  322. 'desc_inputs': [[2, 2]],
  323. 'skip': ['backward']}),
  324. ('MatMul_1', {
  325. 'block': P.MatMul(transpose_a=False, transpose_b=False),
  326. 'desc_inputs': [[1024, 160], [160, 1024]],
  327. 'desc_bprop': [[1024, 1024]]}),
  328. ('MatMul_2', {
  329. 'block': P.MatMul(transpose_a=True, transpose_b=True),
  330. 'desc_inputs': [[160, 1024], [1024, 160]],
  331. 'desc_bprop': [[1024, 1024]]}),
  332. ('Sub', {
  333. 'block': P.Sub(),
  334. 'desc_inputs': [[3], [3]],
  335. 'desc_bprop': [[3]]}),
  336. ('TruncatedNormal', {
  337. 'block': P.TruncatedNormal(),
  338. 'desc_const': [(1, 2, 3)],
  339. 'desc_inputs': [],
  340. 'skip': ['backward'],
  341. 'add_fake_input': True}),
  342. ('Select', {
  343. 'block': P.Select(),
  344. 'desc_inputs': [Tensor(np.array([[True, False, False], [False, True, True]])),
  345. [2, 3], [2, 3]],
  346. 'desc_bprop': [[2, 3]]}),
  347. ('Rank', {
  348. 'block': P.Rank(),
  349. 'desc_inputs': [[2, 3]],
  350. 'skip': ['backward']}),
  351. ('InvertPermutation', {
  352. 'block': P.InvertPermutation(),
  353. 'desc_const': [(0, 3, 1, 2)],
  354. 'desc_inputs': [],
  355. 'skip': ['backward']}),
  356. ('Square', {
  357. 'block': P.Square(),
  358. 'desc_inputs': [[4]],
  359. 'desc_bprop': [[4]]}),
  360. ('Rsqrt', {
  361. 'block': P.Rsqrt(),
  362. 'desc_inputs': [[4]],
  363. 'desc_bprop': [[4]]}),
  364. ('Sqrt', {
  365. 'block': P.Sqrt(),
  366. 'desc_inputs': [[4]],
  367. 'desc_bprop': [[4]]}),
  368. ('RealDiv', {
  369. 'block': P.RealDiv(),
  370. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  371. 'desc_bprop': [[2, 3, 4, 5]]}),
  372. ('Div', {
  373. 'block': P.Div(),
  374. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  375. 'desc_bprop': [[2, 3, 4, 5]]}),
  376. ('Equal', {
  377. 'block': P.Equal(),
  378. 'desc_inputs': [[3, 4, 5], [4, 5]],
  379. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  380. ('NotEqual', {
  381. 'block': P.NotEqual(),
  382. 'desc_inputs': [[4, 1], [2, 3, 4, 5]],
  383. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  384. ('NotEqual_0', {
  385. 'block': P.NotEqual(),
  386. 'desc_inputs': [1, [2, 3, 4, 5]],
  387. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))],
  388. 'skip': ['backward']}),
  389. ('Greater', {
  390. 'block': P.Greater(),
  391. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  392. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  393. ('GreaterEqual', {
  394. 'block': P.GreaterEqual(),
  395. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  396. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  397. ('LogicalNot', {
  398. 'block': P.LogicalNot(),
  399. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))],
  400. 'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}),
  401. ('LogicalAnd', {
  402. 'block': P.LogicalAnd(),
  403. 'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
  404. 'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
  405. ('LogicalOr', {
  406. 'block': P.LogicalOr(),
  407. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
  408. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  409. ('NpuAllocFloatStatus', {
  410. 'block': P.NPUAllocFloatStatus(),
  411. 'desc_inputs': [],
  412. 'add_fack_input': True,
  413. 'fack_input_type': np.float32,
  414. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  415. 'skip': ['backward']}),
  416. ('NpuGetFloatStatus', {
  417. 'block': P.NPUGetFloatStatus(),
  418. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  419. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  420. 'skip': ['backward']}),
  421. ('NpuClearFloatStatus', {
  422. 'block': P.NPUClearFloatStatus(),
  423. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  424. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  425. 'skip': ['backward']}),
  426. ('CheckValid', {
  427. 'block': P.CheckValid(),
  428. 'desc_inputs': [[20000, 4], [3]],
  429. 'desc_bprop': [[20000]],
  430. 'skip': ['backward']}),
  431. ('NMSWithMask', {
  432. 'block': P.NMSWithMask(0.5),
  433. 'desc_inputs': [[128, 5]],
  434. 'desc_bprop': [[128, 5], [128], [128]],
  435. 'skip': ['backward']}),
  436. ('Abs', {
  437. 'block': P.Abs(),
  438. 'desc_inputs': [[4]],
  439. 'desc_bprop': [[4]]}),
  440. ('CumSum', {
  441. 'block': P.CumSum(),
  442. 'desc_const': [0],
  443. 'desc_inputs': [Tensor(np.array([[3, 4], [1, 6]]).astype(np.float16))],
  444. 'desc_bprop': [Tensor(np.array([[3, 4], [4, 10]]).astype(np.float16))]}),
  445. ('ReduceSum_3', {
  446. 'block': P.ReduceSum(),
  447. 'desc_const': [0],
  448. 'desc_inputs': [[3, 2]],
  449. 'desc_bprop': [[2]]}),
  450. ('ReduceSum_4', {
  451. 'block': P.ReduceSum(keep_dims=True),
  452. 'desc_const': [0],
  453. 'desc_inputs': [[3, 2]],
  454. 'desc_bprop': [[1, 2]]}),
  455. ('ReduceSum_5', {
  456. 'block': P.ReduceSum(keep_dims=True),
  457. 'desc_inputs': [[2, 3, 4]],
  458. 'desc_bprop': [[1, 1, 1]]}),
  459. ('ReduceSum_6', {
  460. 'block': P.ReduceSum(),
  461. 'desc_inputs': [[2, 3, 4]],
  462. 'desc_bprop': [[1]]}),
  463. ('Sum_0', {
  464. 'block': P.ReduceSum(),
  465. 'desc_const': [(1,)],
  466. 'desc_inputs': [[3, 2]],
  467. 'desc_bprop': [[3]]}),
  468. ('Sum_1', {
  469. 'block': P.ReduceSum(keep_dims=True),
  470. 'desc_const': [(1,)],
  471. 'desc_inputs': [[3, 2]],
  472. 'desc_bprop': [[3, 1]]}),
  473. ('Sum_2', {
  474. 'block': P.ReduceSum(),
  475. 'desc_const': [(0, 1)],
  476. 'desc_inputs': [[3, 2]],
  477. 'desc_bprop': [[1]]}),
  478. ('Sum_3', {
  479. 'block': P.ReduceSum(),
  480. 'desc_const': [0],
  481. 'desc_inputs': [[3, 2]],
  482. 'desc_bprop': [[2]]}),
  483. ('Sum_4', {
  484. 'block': P.ReduceSum(keep_dims=True),
  485. 'desc_const': [0],
  486. 'desc_inputs': [[3, 2]],
  487. 'desc_bprop': [[1, 2]]}),
  488. ('Sum_5', {
  489. 'block': P.ReduceSum(keep_dims=True),
  490. 'desc_const': [()],
  491. 'desc_inputs': [[2, 3, 4]],
  492. 'desc_bprop': [[1, 1, 1]]}),
  493. ('Sum_6', {
  494. 'block': P.ReduceSum(),
  495. 'desc_const': [()],
  496. 'desc_inputs': [[2, 3, 4]],
  497. 'desc_bprop': [[1]]}),
  498. ('Sign', {
  499. 'block': P.Sign(),
  500. 'desc_inputs': [[3]],
  501. 'desc_bprop': [[3]]}),
  502. ('Round', {
  503. 'block': P.Round(),
  504. 'desc_inputs': [[3]],
  505. 'desc_bprop': [[3]]}),
  506. ('Atan2', {
  507. 'block': P.Atan2(),
  508. 'desc_inputs': [Tensor(np.array([0, 1]).astype(np.float32)),
  509. Tensor(np.array([1, 1]).astype(np.float32))],
  510. 'desc_bprop': [[2]]})
  511. ]
  512. test_case_nn_ops = [
  513. ('BiasAdd', {
  514. 'block': P.BiasAdd(),
  515. 'desc_inputs': [[1, 3, 3, 3], [3]],
  516. 'desc_bprop': [[1, 3, 3, 3]]}),
  517. ('BiasAddGrad', {
  518. 'block': G.BiasAddGrad(),
  519. 'desc_inputs': [[1, 3, 3, 3]],
  520. 'skip': ['backward']}),
  521. ('Gelu', {
  522. 'block': P.Gelu(),
  523. 'desc_inputs': [[1, 3, 4, 4]],
  524. 'desc_bprop': [[1, 3, 4, 4]]}),
  525. ('GeluGrad', {
  526. 'block': G.GeluGrad(),
  527. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  528. 'desc_bprop': [[2, 2]],
  529. 'skip': ['backward']}),
  530. ('Tanh', {
  531. 'block': P.Tanh(),
  532. 'desc_inputs': [[1, 3, 4, 4]],
  533. 'desc_bprop': [[1, 3, 4, 4]]}),
  534. ('TanhGrad', {
  535. 'block': G.TanhGrad(),
  536. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  537. 'desc_bprop': [[1, 3, 4, 4]],
  538. 'skip': ['backward']}),
  539. ('ReLU', {
  540. 'block': P.ReLU(),
  541. 'desc_inputs': [[1, 3, 4, 4]],
  542. 'desc_bprop': [[1, 3, 4, 4]]}),
  543. ('ReLU6', {
  544. 'block': P.ReLU6(),
  545. 'desc_inputs': [[1, 3, 4, 4]],
  546. 'desc_bprop': [[1, 3, 4, 4]]}),
  547. ('ReLUV2', {
  548. 'block': P.ReLUV2(),
  549. 'desc_inputs': [[1, 3, 4, 4]],
  550. 'desc_bprop': [[1, 3, 4, 4], ([1, 1, 4, 4, 2], {'dtype': np.uint8})]}),
  551. ('ReLUGrad', {
  552. 'block': G.ReluGrad(),
  553. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  554. 'skip': ['backward']}),
  555. ('Elu', {
  556. 'block': P.Elu(),
  557. 'desc_inputs': [[2, 3, 4]],
  558. 'desc_bprop': [[2, 3, 4]]}),
  559. ('EluGrad', {
  560. 'block': G.EluGrad(),
  561. 'desc_inputs': [[2, 3, 4], [2, 3, 4]],
  562. 'desc_bprop': [[2, 3, 4]],
  563. 'skip': ['backward']}),
  564. ('Sigmoid', {
  565. 'block': P.Sigmoid(),
  566. 'desc_inputs': [[1, 3, 4, 4]],
  567. 'desc_bprop': [[1, 3, 4, 4]]}),
  568. ('MaxPool', {
  569. 'block': P.MaxPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  570. 'desc_inputs': [[100, 3, 28, 28]],
  571. 'desc_bprop': [[100, 3, 14, 14]]}),
  572. ('MaxPoolGrad', {
  573. 'block': G.MaxPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  574. 'desc_inputs': [[3, 4, 6, 6], [3, 4, 3, 3], [3, 4, 3, 3]],
  575. 'desc_bprop': [[3, 4, 6, 6]],
  576. 'skip': ['backward']}),
  577. ('AvgPool', {
  578. 'block': P.AvgPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  579. 'desc_inputs': [[100, 3, 28, 28]],
  580. 'desc_bprop': [[100, 3, 14, 14]]}),
  581. ('AvgPoolGrad', {
  582. 'block': G.AvgPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  583. 'desc_const': [(3, 4, 6, 6)],
  584. 'const_first': True,
  585. 'desc_inputs': [[3, 4, 6, 6]],
  586. 'desc_bprop': [[3, 4, 6, 6]],
  587. 'skip': ['backward']}),
  588. ('MaxPoolWithArgmax', {
  589. 'block': P.MaxPoolWithArgmax(ksize=2, strides=2),
  590. 'desc_inputs': [[128, 32, 32, 64]],
  591. 'desc_bprop': [[128, 32, 16, 32], ([128, 32, 4, 33], {'dtype': np.uint16})]}),
  592. ('SoftmaxCrossEntropyWithLogits', {
  593. 'block': P.SoftmaxCrossEntropyWithLogits(),
  594. 'desc_inputs': [[1, 10], [1, 10]],
  595. 'desc_bprop': [[1], [1, 10]],
  596. 'skip': ['backward_exec']}),
  597. ('Flatten', {
  598. 'block': P.Flatten(),
  599. 'desc_inputs': [[128, 32, 32, 64]],
  600. 'desc_bprop': [[128 * 32 * 8 * 16]]}),
  601. ('LogSoftmax', {
  602. 'block': P.LogSoftmax(),
  603. 'desc_inputs': [[64, 2]],
  604. 'desc_bprop': [[64, 2]]}),
  605. ('LogSoftmaxGrad', {
  606. 'block': G.LogSoftmaxGrad(),
  607. 'desc_inputs': [[16, 1234], [16, 1234]],
  608. 'desc_bprop': [[64, 2]],
  609. 'skip': ['backward']}),
  610. ('LayerNorm', {
  611. 'block': P.LayerNorm(),
  612. 'desc_inputs': [[2, 16], [16], [16]],
  613. 'desc_bprop': [[2, 16], [2, 1], [2, 1]]}),
  614. ('LayerNormGrad', {
  615. 'block': G.LayerNormGrad(),
  616. 'desc_inputs': [[2, 16], [2, 16], [2, 16], [2, 16], [16]],
  617. 'desc_bprop': [[2, 16], [16], [16]],
  618. 'skip': ['backward']}),
  619. ('FusedBatchNorm', {
  620. 'block': P.FusedBatchNorm(),
  621. 'desc_inputs': [[128, 64, 32, 64], [64], [64], [64], [64]],
  622. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  623. 'skip': []}),
  624. ('FusedBatchNormGrad', {
  625. 'block': G.FusedBatchNormGrad(),
  626. 'desc_inputs': [[128, 64, 32, 64], [128, 64, 32, 64], [64], [64], [64]],
  627. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  628. 'skip': ['backward']}),
  629. ('BatchNorm', {
  630. 'block': P.BatchNorm(),
  631. 'desc_inputs': [[128, 64, 32, 32], [64], [64], [64], [64]],
  632. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  633. 'skip': []}),
  634. ('BatchNormGrad', {
  635. 'block': G.BatchNormGrad(),
  636. 'desc_inputs': [[128, 64, 32, 32], [128, 64, 32, 32], [64], [64], [64]],
  637. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  638. 'skip': ['backward']}),
  639. ('TopK', {
  640. 'block': P.TopK(),
  641. 'desc_const': [5],
  642. 'desc_inputs': [[20, 20, 10]],
  643. 'desc_bprop': [[20, 20, 5]],
  644. 'skip': ['backward']}),
  645. ('GatherV2_0', {
  646. 'block': P.GatherV2(),
  647. 'desc_const': [0],
  648. 'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
  649. 'desc_bprop': [[2, 1, 2]]}),
  650. ('GatherV2_1', {
  651. 'block': P.GatherV2(),
  652. 'desc_const': [2],
  653. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  654. 'desc_bprop': [[3, 1, 2]]}),
  655. ('GatherV2_2', {
  656. 'block': P.GatherV2(),
  657. 'desc_const': [0],
  658. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  659. 'desc_bprop': [[3, 2, 1, 3]]}),
  660. ('GatherV2_3', {
  661. 'block': P.GatherV2(),
  662. 'desc_const': [2],
  663. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  664. 'desc_bprop': [[3, 1, 3, 2]]}),
  665. ('GatherV2_4', {
  666. 'block': P.GatherV2(),
  667. 'desc_const': [1],
  668. 'desc_inputs': [[32, 5, 1024], Tensor(np.array([3]).astype(np.int32))],
  669. 'desc_bprop': [[32, 1, 1024]]}),
  670. ('GatherV2_5', {
  671. 'block': P.GatherV2(),
  672. 'desc_const': [-1],
  673. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  674. 'desc_bprop': [[3, 1, 2]]}),
  675. ('GatherV2_6', {
  676. 'block': P.GatherV2(),
  677. 'desc_const': [0],
  678. 'desc_inputs': [[1152], Tensor(np.array(10).astype(np.int32))],
  679. 'desc_bprop': [Tensor(np.array(10).astype(np.float32))]}),
  680. ('UnsortedSegmentSum', {
  681. 'block': P.UnsortedSegmentSum(),
  682. 'desc_const': [1280],
  683. 'desc_inputs': [[1280, 1024], Tensor(np.ones(1280).astype(np.int32))],
  684. 'desc_bprop': [[8192, 1024]],
  685. 'skip': ['backward']}),
  686. ('UnsortedSegmentSum_1', {
  687. 'block': P.UnsortedSegmentSum(),
  688. 'desc_const': [4],
  689. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  690. 'desc_bprop': [[4, 1, 3]],
  691. 'skip': ['backward']}),
  692. ('DropoutGenMask', {
  693. 'block': P.DropoutGenMask(),
  694. 'desc_const': [(2, 2), Tensor(0.5, mstype.float32)],
  695. 'desc_inputs': [],
  696. 'desc_bprop': [Tensor(np.ones(1).astype(np.int8))],
  697. 'skip': ['backward']}),
  698. ('DropoutDoMask', {
  699. 'block': P.DropoutDoMask(),
  700. 'desc_const': [Tensor(0.5)],
  701. 'desc_inputs': [[64, 12, 128, 128], Tensor(np.ones(1572864).astype(np.uint8))],
  702. 'desc_bprop': [[64, 12, 128, 128]]}),
  703. ('Dropout', {
  704. 'block': nn.Dropout(0.5),
  705. 'desc_inputs': [[64, 12, 128, 128]],
  706. 'desc_bprop': [[64, 12, 128, 128]]}),
  707. ('ReduceMean0', {
  708. 'block': P.ReduceMean(),
  709. 'desc_const': [(2,)],
  710. 'desc_inputs': [[3, 2, 2]],
  711. 'desc_bprop': [[3, 2]]}),
  712. ('ReduceMean1', {
  713. 'block': P.ReduceMean(),
  714. 'desc_const': [2],
  715. 'desc_inputs': [[3, 2, 2]],
  716. 'desc_bprop': [[3, 2]]}),
  717. ('All', {
  718. 'block': P.ReduceAll(),
  719. 'desc_const': [(1,)],
  720. 'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.bool_))],
  721. 'desc_bprop': [[3]],
  722. 'skip': ['backward']}),
  723. ('DescConst', {
  724. 'block': Tensor(np.array([2], np.float32)),
  725. 'desc_inputs': [],
  726. 'desc_bprop': [[1]],
  727. 'skip': ['backward'],
  728. 'add_fake_input': True}),
  729. ('Fill', {
  730. 'block': P.Fill(),
  731. 'desc_const': [mstype.float32, (2, 3), 1.0],
  732. 'desc_inputs': [],
  733. 'desc_bprop': [[2, 3]],
  734. 'skip': ['backward'],
  735. 'add_fake_input': True}),
  736. ('OnesLike', {
  737. 'block': P.OnesLike(),
  738. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  739. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  740. }),
  741. ('ZerosLike', {
  742. 'block': P.ZerosLike(),
  743. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  744. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  745. }),
  746. ('Softmax', {
  747. 'block': P.Softmax(),
  748. 'desc_inputs': [[5, 5]],
  749. 'desc_bprop': [[5, 5]]}),
  750. ('DepthwiseConv2dNative_1', {
  751. 'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2),
  752. 'desc_inputs': [[10, 32, 32, 32], [1, 32, 3, 3]],
  753. 'desc_bprop': [[10, 32, 16, 16]]}),
  754. ('DepthwiseConv2dNative_2', {
  755. 'block': P.DepthwiseConv2dNative(1, (3, 3), pad_mode="same", pad=0, stride=1),
  756. 'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]],
  757. 'desc_bprop': [[2592, 2048, 4, 4]]}),
  758. ('SigmoidCrossEntropyWithLogits', {
  759. 'block': P.SigmoidCrossEntropyWithLogits(),
  760. 'desc_inputs': [[128, 10], [128, 10]],
  761. 'desc_bprop': [[128, 10]]}),
  762. ('Pad', {
  763. 'block': P.Pad(((1, 2), (2, 3))),
  764. 'desc_inputs': [[7, 7]],
  765. 'desc_bprop': [[10, 12]]}),
  766. ('BinaryCrossEntropy', {
  767. 'block': P.BinaryCrossEntropy(),
  768. 'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]],
  769. 'desc_bprop': []}),
  770. ('SparseApplyAdagrad', {
  771. 'block': P.SparseApplyAdagrad(0.5),
  772. 'desc_inputs': [[3, 3], [3, 3], [3, 3], Tensor(np.ones((3,), np.int32))],
  773. 'desc_bprop': [[3, 3], [3, 3]],
  774. 'skip': ['backward']}),
  775. ('Flatten_1', {
  776. 'block': NetForFlatten(),
  777. 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
  778. 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
  779. 'skip': ['backward']}),
  780. ('Flatten_2', {
  781. 'block': NetForFlatten(),
  782. 'desc_inputs': [Tensor(np.ones([8]).astype(np.int32)), Tensor(np.ones([8, 3]).astype(np.int32))],
  783. 'desc_bprop': [Tensor(np.ones([8, 3]).astype(np.int32))],
  784. 'skip': ['backward']}),
  785. ('ArgmaxNet', {
  786. 'block': ArgmaxNet(),
  787. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  788. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  789. 'skip': ['backward']}),
  790. ('ArgminNet', {
  791. 'block': ArgminNet(),
  792. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  793. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64], [128, 32, 32, 64]]).astype(np.float16))],
  794. 'skip': ['backward']}),
  795. ('CumSumNet', {
  796. 'block': CumSumNet(),
  797. 'desc_const': [0],
  798. 'desc_inputs': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float16))],
  799. 'desc_bprop': [
  800. Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float16))]}),
  801. ('OneHot', {
  802. 'block': P.OneHot(),
  803. 'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)],
  804. 'desc_inputs': [Tensor(np.array([64]).astype(np.int32))],
  805. 'desc_bprop': [[1, 3]]}),
  806. ('ReduceProd_0', {
  807. 'block': P.ReduceProd(),
  808. 'desc_const': [0],
  809. 'desc_inputs': [[3, 2]],
  810. 'desc_bprop': [[2]]}),
  811. ('ReduceProd_1', {
  812. 'block': P.ReduceProd(keep_dims=True),
  813. 'desc_const': [0],
  814. 'desc_inputs': [[3, 2]],
  815. 'desc_bprop': [[1, 2]]}),
  816. ('CumProd', {
  817. 'block': P.CumProd(),
  818. 'desc_const': [0],
  819. 'desc_inputs': [[3, 2]],
  820. 'desc_bprop': [[3, 2]]}),
  821. ('ApplyFtrl', {
  822. 'block': P.ApplyFtrl(),
  823. 'desc_const': [0.001, 0.0, 0.0, -0.5],
  824. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  825. 'desc_bprop': [3, 3],
  826. 'skip': ['backward']}),
  827. ('ApplyRMSProp', {
  828. 'block': P.ApplyRMSProp(),
  829. 'desc_const': [0.9, 0.0, 1e-10, 0.001],
  830. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  831. 'desc_bprop': [3, 3],
  832. 'skip': ['backward']}),
  833. ('ApplyCenteredRMSProp', {
  834. 'block': P.ApplyCenteredRMSProp(),
  835. 'desc_const': [0.9, 0.0, 1e-10, 0.001],
  836. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3]],
  837. 'desc_bprop': [3, 3],
  838. 'skip': ['backward']}),
  839. ('L2Loss_1', {
  840. 'block': P.L2Loss(),
  841. 'desc_inputs': [Tensor(np.array([1, 2, 3, 4]), mstype.float32)],
  842. 'desc_bprop': []}),
  843. ('L2Loss_2', {
  844. 'block': P.L2Loss(),
  845. 'desc_inputs': [Tensor(np.array([[1, 1], [2, 2], [3, 3], [4, 4]]), mstype.float16)],
  846. 'desc_bprop': []}),
  847. ]
  848. test_case_array_ops = [
  849. ('SpaceToDepth', {
  850. 'block': P.SpaceToDepth(2),
  851. 'desc_inputs': [[1, 3, 2, 2]],
  852. 'desc_bprop': [[1, 12, 1, 1]]}),
  853. ('DepthToSpace', {
  854. 'block': P.DepthToSpace(2),
  855. 'desc_inputs': [[1, 12, 1, 1]],
  856. 'desc_bprop': [[1, 3, 2, 2]]}),
  857. ('Split', {
  858. 'block': P.Split(1, 2),
  859. 'desc_inputs': [Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))],
  860. 'skip': ['backward']}),
  861. ('Argmax', {
  862. 'block': P.Argmax(),
  863. 'desc_inputs': [[128, 32, 32, 64]],
  864. 'desc_bprop': [0],
  865. 'skip': ['backward']}),
  866. ('Argmin', {
  867. 'block': P.Argmin(),
  868. 'desc_inputs': [[128, 32, 32, 64]],
  869. 'desc_bprop': [1],
  870. 'skip': ['backward']}),
  871. ('ArgMaxWithValue', {
  872. 'block': P.ArgMaxWithValue(),
  873. 'desc_inputs': [[128, 32, 32, 64]],
  874. 'desc_bprop': [[1], [1]],
  875. 'skip': ['backward']}),
  876. ('ArgMinWithValue', {
  877. 'block': P.ArgMinWithValue(),
  878. 'desc_inputs': [[128, 32, 32, 64]],
  879. 'desc_bprop': [[1], [1]],
  880. 'skip': ['backward']}),
  881. ('Transpose_dim3', {
  882. 'block': P.Transpose(),
  883. 'desc_const': [(0, 2, 1)],
  884. 'desc_inputs': [[1, 2, 3]],
  885. 'desc_bprop': [[1, 3, 2]]}),
  886. ('Transpose_dim4', {
  887. 'block': P.Transpose(),
  888. 'desc_const': [(0, 1, 2, 3)],
  889. 'desc_inputs': [[1, 2, 3, 4]],
  890. 'desc_bprop': [[1, 2, 4, 3]]}),
  891. ('AddN', {
  892. 'block': NetForTupleInput(P.AddN()),
  893. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  894. 'desc_bprop': [[2, 3, 3, 5]],
  895. 'skip': ['backward']}),
  896. ('Shape', {
  897. 'block': P.Shape(),
  898. 'desc_inputs': [[3, 3, 2, 2]],
  899. 'skip': ['backward']}),
  900. ('Reshape', {
  901. 'block': P.Reshape(),
  902. 'desc_const': [(64,)],
  903. 'desc_inputs': [[64, 1]],
  904. 'desc_bprop': [[64]]}),
  905. ('Cast', {
  906. 'block': P.Cast(),
  907. 'desc_const': [mstype.int32],
  908. 'desc_inputs': [[2, 3, 4, 5]],
  909. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5)).astype(np.int32))]}),
  910. ('ExpandDims', {
  911. 'block': P.ExpandDims(),
  912. 'desc_const': [0],
  913. 'desc_inputs': [[2, 2]],
  914. 'desc_bprop': [[1, 2, 2]]}),
  915. ('ExpandDims_1', {
  916. 'block': P.ExpandDims(),
  917. 'desc_const': [-1],
  918. 'desc_inputs': [[2, 2]],
  919. 'desc_bprop': [[2, 2, 1]]}),
  920. ('Squeeze', {
  921. 'block': P.Squeeze(2),
  922. 'desc_inputs': [[3, 2, 1]],
  923. 'desc_bprop': [[3, 2]]}),
  924. ('Squeeze_0', {
  925. 'block': P.Squeeze(),
  926. 'desc_inputs': [[3, 1, 2, 1]],
  927. 'desc_bprop': [[3, 2]]}),
  928. ('Squeeze_1', {
  929. 'block': P.Squeeze(),
  930. 'desc_inputs': [[1, 1, 1, 1]],
  931. 'desc_bprop': [1.0],
  932. 'skip': ['backward']}),
  933. ('Squeeze_2', {
  934. 'block': P.Squeeze((2, 3)),
  935. 'desc_inputs': [[3, 2, 1, 1]],
  936. 'desc_bprop': [[3, 2]]}),
  937. ('Size', {
  938. 'block': P.Size(),
  939. 'desc_inputs': [[2, 3, 5]],
  940. 'skip': ['backward']}),
  941. ('Tile_0', {
  942. 'block': P.Tile(),
  943. 'desc_const': [(1, 2)],
  944. 'desc_inputs': [[64, 1]],
  945. 'desc_bprop': [[64, 2]]}),
  946. ('Tile_1', {
  947. 'block': P.Tile(),
  948. 'desc_const': [(1, 1)],
  949. 'desc_inputs': [[64, 1]],
  950. 'desc_bprop': [[64, 1]]}),
  951. ('Tile_2', {
  952. 'block': P.Tile(),
  953. 'desc_const': [(2, 1, 1, 2)],
  954. 'desc_inputs': [[2, 2, 2]],
  955. 'desc_bprop': [[2, 2, 2, 4]]}),
  956. ('ConcatV2_0', {
  957. 'block': P.Concat(),
  958. 'desc_inputs': [
  959. (Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)),
  960. Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)))],
  961. 'desc_bprop': [([4, 2], {'dtype': np.int32})]}),
  962. ('ConcatV2_1', {
  963. 'block': P.Concat(axis=2),
  964. 'desc_inputs': [(Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)),
  965. Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32)))],
  966. 'desc_bprop': [([2, 1, 5], {'dtype': np.int32})]}),
  967. ('ConcatV2_2', {
  968. 'block': NetForConcat(),
  969. 'desc_inputs': [[2, 2]],
  970. 'desc_bprop': [[4, 2]]}),
  971. ('ConcatV2_3', {
  972. 'block': NetForConcat1(),
  973. 'desc_inputs': [[2, 2], [2, 2]],
  974. 'desc_bprop': [[4, 2]]}),
  975. ('ConcatV2_4', {
  976. 'block': P.Concat(axis=0),
  977. 'desc_inputs': [
  978. (Tensor(np.ones((3, 2, 3), np.float32)),
  979. Tensor(np.ones((5, 2, 3), np.float32)),
  980. Tensor(np.ones((6, 2, 3), np.float32)))],
  981. 'desc_bprop': [[14, 2, 3]]}),
  982. ('ConcatV2_5', {
  983. 'block': P.Concat(axis=-1),
  984. 'desc_inputs': [(Tensor(np.array([1], np.float32)),
  985. Tensor(np.array([1], np.float32)),
  986. Tensor(np.array([1], np.float32)))],
  987. 'desc_bprop': [[3, ]]}),
  988. ('Pack_0', {
  989. 'block': NetForPackInput(P.Pack()),
  990. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  991. 'desc_bprop': [[3, 2, 2]],
  992. }),
  993. ('Pack_1', {
  994. 'block': NetForPackInput(P.Pack(axis=-2)),
  995. 'desc_inputs': [[3, 2, 3], [3, 2, 3], [3, 2, 3]],
  996. 'desc_bprop': [[3, 2, 3, 3]],
  997. }),
  998. ('Pack_2', {
  999. 'block': NetForPackInput(P.Pack()),
  1000. 'desc_inputs': [[128, 128], [128, 128]],
  1001. 'desc_bprop': [[2, 128, 128]],
  1002. }),
  1003. ('Unpack_0', {
  1004. 'block': NetForUnpackInput(P.Unpack(axis=0)),
  1005. 'desc_inputs': [[2, 4]],
  1006. 'desc_bprop': [[4], [4]],
  1007. }),
  1008. ('Unpack_1', {
  1009. 'block': NetForUnpackInput(P.Unpack(axis=-1)),
  1010. 'desc_inputs': [Tensor(np.array([[1, 1, 1]], np.float32))],
  1011. 'desc_bprop': [[1], [1], [1]],
  1012. }),
  1013. ('Diag_1', {
  1014. 'block': P.Diag(),
  1015. 'desc_inputs': [[4]],
  1016. 'desc_bprop': [[4, 4]],
  1017. }),
  1018. ('Diag_2', {
  1019. 'block': P.Diag(),
  1020. 'desc_inputs': [[4, 4]],
  1021. 'desc_bprop': [[4, 4, 4, 4]],
  1022. }),
  1023. ('DiagPart_1', {
  1024. 'block': P.DiagPart(),
  1025. 'desc_inputs': [[4, 4]],
  1026. 'desc_bprop': [[4]],
  1027. }),
  1028. ('DiagPart_2', {
  1029. 'block': P.DiagPart(),
  1030. 'desc_inputs': [[4, 4, 4, 4]],
  1031. 'desc_bprop': [[4, 4]],
  1032. }),
  1033. ('SpaceToBatch_1', {
  1034. 'block': P.SpaceToBatch(2, [[0, 0], [0, 0]]),
  1035. 'desc_inputs': [[1, 3, 2, 2]],
  1036. 'desc_bprop': [[4, 3, 1, 1]],
  1037. }),
  1038. ('SpaceToBatch_2', {
  1039. 'block': P.SpaceToBatch(2, [[1, 1], [0, 4]]),
  1040. 'desc_inputs': [[1, 3, 2, 2]],
  1041. 'desc_bprop': [[4, 3, 2, 3]],
  1042. }),
  1043. ('BatchToSpace_1', {
  1044. 'block': P.BatchToSpace(2, [[0, 0], [0, 0]]),
  1045. 'desc_inputs': [[4, 3, 1, 1]],
  1046. 'desc_bprop': [[1, 3, 2, 2]],
  1047. }),
  1048. ('BatchToSpace_2', {
  1049. 'block': P.BatchToSpace(2, [[0, 0], [0, 1]]),
  1050. 'desc_inputs': [[4, 3, 1, 1]],
  1051. 'desc_bprop': [[1, 3, 2, 1]],
  1052. }),
  1053. ]
  1054. test_case_other_ops = [
  1055. ('ScalarLog', {
  1056. 'block': F.scalar_log,
  1057. 'desc_const': [0.0],
  1058. 'desc_inputs': [],
  1059. 'desc_bprop': [1],
  1060. 'skip': ['backward']}),
  1061. ('BoundingBoxEncode', {
  1062. 'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)),
  1063. 'desc_inputs': [[256, 4], [256, 4]],
  1064. 'desc_bprop': [[256, 4]],
  1065. 'skip': ['backward']}),
  1066. ('BoundingBoxDecode', {
  1067. 'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)),
  1068. 'desc_inputs': [[256, 4], [256, 4]],
  1069. 'desc_bprop': [[256, 4]],
  1070. 'skip': ['backward']}),
  1071. ('GatherNd', {
  1072. 'block': P.GatherNd(),
  1073. 'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)),
  1074. Tensor(np.ones((2, 4), np.int32))),
  1075. 'desc_bprop': [[2]]}),
  1076. ('ScatterNd', {
  1077. 'block': P.ScatterNd(),
  1078. 'desc_const': [(3, 3)],
  1079. 'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
  1080. Tensor(np.ones((2,), np.int32))),
  1081. 'desc_bprop': [([3, 3], {'dtype': np.int32})]}),
  1082. ('ScatterMax', {
  1083. 'block': ScatterMax(),
  1084. 'desc_inputs': (Tensor(np.array([[0, 0], [1, 1]], np.int32)),
  1085. Tensor(np.ones([2, 2, 3], np.float32) * 99)),
  1086. 'skip': ['backward']}),
  1087. ('SmoothL1Loss', {
  1088. 'block': P.SmoothL1Loss(),
  1089. 'desc_inputs': [[256, 4], [256, 4]],
  1090. 'desc_bprop': [[256, 4]]}),
  1091. ('IOU', {
  1092. 'block': P.IOU(),
  1093. 'desc_inputs': [Tensor(np.ones((256, 4), np.float16)), Tensor(np.ones((128, 4), np.float16))],
  1094. 'desc_bprop': [[128, 256]]}),
  1095. ('Summary', {
  1096. 'block': SummaryNet(),
  1097. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  1098. Tensor(np.array([1.2]).astype(np.float32))],
  1099. 'skip': ['backward']}),
  1100. ('ConfusionMulGrad_1', {
  1101. 'block': P.ConfusionMulGrad(axis=[0], keep_dims=False),
  1102. 'desc_inputs': [[3, 2], [3, 2], [3, 2]],
  1103. 'desc_bprop': [[3, 2], [2]],
  1104. 'skip': ['backward']}),
  1105. ('ConfusionMulGrad_2', {
  1106. 'block': P.ConfusionMulGrad(axis=[0], keep_dims=True),
  1107. 'desc_inputs': [[3, 2], [3, 2], [3, 2]],
  1108. 'desc_bprop': [[3, 2], [1, 2]],
  1109. 'skip': ['backward']}),
  1110. ('ConfusionMulGrad_3', {
  1111. 'block': P.ConfusionMulGrad(axis=(), keep_dims=True),
  1112. 'desc_inputs': [[2, 3, 4], [2, 3, 4], [2, 3, 4]],
  1113. 'desc_bprop': [[2, 3, 4], [1, 1, 1]],
  1114. 'skip': ['backward']}),
  1115. ('HistogramSummary', {
  1116. 'block': HistogramSummaryNet(),
  1117. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  1118. Tensor(np.array([1.2]).astype(np.float32))],
  1119. 'skip': ['backward']}),
  1120. ]
  1121. test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops]
  1122. test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
  1123. # use -k to select certain testcast
  1124. # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
  1125. test_exec_case = test_case
  1126. test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or
  1127. 'backward' not in x[1]['skip'], test_case)
  1128. @non_graph_engine
  1129. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
  1130. def test_exec():
  1131. context.set_context(mode=context.GRAPH_MODE)
  1132. return test_exec_case
  1133. @mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
  1134. def test_backward_exec():
  1135. context.set_context(mode=context.GRAPH_MODE)
  1136. return test_backward_exec_case
  1137. raise_set = [
  1138. ('Cast_Error', {
  1139. 'block': (P.Cast(), {'exception': TypeError}),
  1140. 'desc_const': [mstype.int32],
  1141. 'desc_inputs': ['wrong input'],
  1142. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  1143. ('Maximum_Error', {
  1144. 'block': (P.Maximum(), {'exception': TypeError}),
  1145. 'desc_const': [(1, 2, 3)],
  1146. 'desc_inputs': [[2, 3, 3, 5]],
  1147. 'desc_bprop': [[2, 3, 3, 5]]}),
  1148. ('Shape_error', {
  1149. 'block': (P.Shape(), {'exception': TypeError}),
  1150. 'desc_inputs': [(64, 1)],
  1151. 'desc_bprop': [[64]]}),
  1152. ('Flatten_Error', {
  1153. 'block': (NetForFlatten0D(), {'exception': ValueError}),
  1154. 'desc_inputs': [Tensor(np.array(0).astype(np.int32))],
  1155. 'desc_bprop': [Tensor(np.array(0).astype(np.int32))]}),
  1156. ('ScatterNdUpdate', {
  1157. 'block': (P.ScatterNdUpdate(), {'exception': TypeError}),
  1158. 'desc_inputs': (Tensor(np.ones((2, 3), np.float32)),
  1159. Tensor(np.ones((2, 2), np.int32)),
  1160. Tensor(np.ones((2,), np.float32))),
  1161. 'desc_bprop': [[2, 3]]}),
  1162. ('Pack', {
  1163. 'block': (NetForPackInput(P.Pack()), {'exception': ValueError}),
  1164. 'desc_inputs': [[2, 2]],
  1165. 'desc_bprop': [[1, 2, 2]]}),
  1166. ('PReLU', {
  1167. 'block': (P.PReLU(), {'exception': ValueError}),
  1168. 'desc_inputs': [[2], [1]],
  1169. 'desc_bprop': [[1]]}),
  1170. ]
  1171. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  1172. def test_check_exception():
  1173. return raise_set