You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_pynative_hook.py 7.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import pytest
  16. import numpy as np
  17. import mindspore.nn as nn
  18. import mindspore.common.dtype as mstype
  19. from mindspore import Tensor
  20. from mindspore import context
  21. from mindspore import ParameterTuple
  22. from mindspore.nn import Momentum
  23. from mindspore.nn import WithLossCell
  24. from mindspore.ops import composite as C
  25. from mindspore.ops import operations as P
  26. from mindspore.common.initializer import TruncatedNormal
  27. context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
  28. grad_all = C.GradOperation(get_all=True)
  29. def weight_variable():
  30. """weight initial"""
  31. return TruncatedNormal(0.02)
  32. def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
  33. """weight initial for conv layer"""
  34. weight = weight_variable()
  35. return nn.Conv2d(in_channels, out_channels,
  36. kernel_size=kernel_size, stride=stride, padding=padding,
  37. weight_init=weight, has_bias=False, pad_mode="valid")
  38. def fc_with_initialize(input_channels, out_channels):
  39. """weight initial for fc layer"""
  40. weight = weight_variable()
  41. bias = weight_variable()
  42. return nn.Dense(input_channels, out_channels, weight, bias)
  43. class test_custom_hook_function_base():
  44. def __init__(self):
  45. pass
  46. def test_custom_hook_function(self, hook_function, cell_hook_function):
  47. return hook_function, cell_hook_function
  48. def cell_hook_function_print_grad(cell_id, grad_input, grad_output):
  49. assert grad_output[0].asnumpy().shape == (32, 6, 14, 14)
  50. assert grad_input[0].asnumpy().shape == (32, 16, 10, 10)
  51. def custom_hook_function_print_and_save_grad(grad_out):
  52. assert grad_out[0].asnumpy().shape == (32, 6, 28, 28)
  53. class LeNet5(nn.Cell):
  54. def __init__(self, hook_function, cell_hook_function, num_class=10):
  55. super(LeNet5, self).__init__()
  56. self.num_class = num_class
  57. self.batch_size = 32
  58. self.conv1 = conv(1, 6, 5)
  59. self.conv2 = conv(6, 16, 5)
  60. self.conv1.register_backward_hook(cell_hook_function)
  61. self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
  62. self.fc2 = fc_with_initialize(120, 84)
  63. self.fc3 = fc_with_initialize(84, self.num_class)
  64. self.relu = nn.ReLU()
  65. self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
  66. self.reshape = P.Reshape()
  67. self.hook = P.HookBackward(hook_function)
  68. def construct(self, x):
  69. x = self.conv1(x)
  70. x = self.relu(x)
  71. x = self.hook(x)
  72. x = self.max_pool2d(x)
  73. x = self.conv2(x)
  74. x = self.relu(x)
  75. x = self.max_pool2d(x)
  76. x = self.reshape(x, (self.batch_size, -1))
  77. x = self.fc1(x)
  78. x = self.relu(x)
  79. x = self.fc2(x)
  80. x = self.relu(x)
  81. x = self.fc3(x)
  82. return x
  83. class GradWrap(nn.Cell):
  84. """ GradWrap definition """
  85. def __init__(self, network):
  86. super(GradWrap, self).__init__(auto_prefix=False)
  87. self.network = network
  88. self.weights = ParameterTuple(filter(lambda x: x.requires_grad, network.get_parameters()))
  89. def construct(self, x, label):
  90. weights = self.weights
  91. return C.GradOperation(get_by_list=True)(self.network, weights)(x, label)
  92. class test_custom_cell_base():
  93. def __init__(self):
  94. pass
  95. def test_custom_cell_function(self, cell):
  96. return cell
  97. class MulAdd(nn.Cell):
  98. def construct(self, x, y):
  99. return 2 * x + y
  100. def bprop(self, x, y, out, dout):
  101. assert x.asnumpy() == 1.0
  102. assert y.asnumpy() == 2.0
  103. assert out.asnumpy() == 4.0
  104. assert dout.asnumpy() == 1.0
  105. return dout, y
  106. class Ms_Cell(nn.Cell):
  107. def __init__(self):
  108. super(Ms_Cell, self).__init__()
  109. self.relu = P.ReLU()
  110. def construct(self, x):
  111. return self.relu(x)
  112. def bprop(self, x, out, dout):
  113. dout = Tensor(np.float32(0.0))
  114. assert dout.shape == ()
  115. return dout
  116. class Ms_Cell_Change_Shape(nn.Cell):
  117. def __init__(self):
  118. super(Ms_Cell_Change_Shape, self).__init__()
  119. self.relu = P.ReLU()
  120. def construct(self, x):
  121. return self.relu(x)
  122. def bprop(self, x, out, dout):
  123. dout = Tensor(np.ones([5, 5]).astype(np.float32))
  124. assert dout.shape == (5, 5)
  125. return dout
  126. @pytest.mark.level0
  127. @pytest.mark.platform_arm_ascend_training
  128. @pytest.mark.platform_x86_ascend_training
  129. @pytest.mark.env_onecard
  130. def test_pynative_lenet_train_hook_function_print_and_save_grad():
  131. hook = test_custom_hook_function_base()
  132. function = hook.test_custom_hook_function(custom_hook_function_print_and_save_grad,
  133. cell_hook_function_print_grad)
  134. net = LeNet5(hook_function=function[0], cell_hook_function=function[1])
  135. optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.1, 0.9)
  136. criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
  137. net_with_criterion = WithLossCell(net, criterion)
  138. train_network = GradWrap(net_with_criterion)
  139. train_network.set_train()
  140. input_data = Tensor(np.ones([net.batch_size, 1, 32, 32]).astype(np.float32) * 0.01)
  141. label = Tensor(np.ones([net.batch_size, net.num_class]).astype(np.float32))
  142. output = net(Tensor(input_data))
  143. criterion(output, label)
  144. grads = train_network(input_data, label)
  145. success = optimizer(grads)
  146. assert success
  147. @pytest.mark.level0
  148. @pytest.mark.platform_arm_ascend_training
  149. @pytest.mark.platform_x86_ascend_training
  150. @pytest.mark.env_onecard
  151. def test_pynative_custom_bprop_and_Cell_MulAdd():
  152. custom_cell = test_custom_cell_base()
  153. mul_add = custom_cell.test_custom_cell_function(MulAdd())
  154. mul_add.bprop_debug = True
  155. grad_all(mul_add)(Tensor(1, mstype.float32), Tensor(2, mstype.float32))
  156. assert grad_all(mul_add)(Tensor(1, mstype.float32), Tensor(2, mstype.float32)) == \
  157. (Tensor(1.0, mstype.float32), Tensor(2.0, mstype.float32))
  158. @pytest.mark.level0
  159. @pytest.mark.platform_arm_ascend_training
  160. @pytest.mark.platform_x86_ascend_training
  161. @pytest.mark.env_onecard
  162. def test_pynative_custom_bprop_and_Cell_Ms_Cell_Change_Shape():
  163. custom_cell = test_custom_cell_base()
  164. ms_Cell = custom_cell.test_custom_cell_function(Ms_Cell_Change_Shape())
  165. ms_Cell.bprop_debug = True
  166. with pytest.raises(RuntimeError) as ex:
  167. grad_all(ms_Cell)(Tensor(1, mstype.float32))
  168. assert "Shapes of input and parameter are different, input index" in str(ex.value)
  169. @pytest.mark.level0
  170. @pytest.mark.platform_arm_ascend_training
  171. @pytest.mark.platform_x86_ascend_training
  172. @pytest.mark.env_onecard
  173. def test_pynative_custom_bprop_and_Cell_Ms_Cell():
  174. custom_cell = test_custom_cell_base()
  175. ms_Cell = custom_cell.test_custom_cell_function(Ms_Cell())
  176. ms_Cell.bprop_debug = True
  177. assert grad_all(ms_Cell)(Tensor(1, mstype.float32)) == (Tensor(0.0, mstype.float32),)