You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_signature.py 2.7 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. test assign sub
  17. """
  18. import numpy as np
  19. import pytest
  20. import mindspore.context as context
  21. import mindspore.nn as nn
  22. import mindspore.ops.operations as P
  23. from mindspore import Tensor
  24. from mindspore.common.initializer import initializer
  25. from mindspore.common.parameter import Parameter
  26. import mindspore as ms
  27. class AssignW(nn.Cell):
  28. def __init__(self):
  29. super(AssignW, self).__init__()
  30. self.assign = P.Assign()
  31. def construct(self, x, w):
  32. self.assign(x, w)
  33. return x
  34. class Net(nn.Cell):
  35. def __init__(self):
  36. super(Net, self).__init__()
  37. self.b = Parameter(initializer('ones', [5]), name='b')
  38. self.assign = AssignW()
  39. def construct(self, value):
  40. return self.assign(self.b, value)
  41. def test_assign_through_cell():
  42. context.set_context(mode=context.GRAPH_MODE)
  43. net = Net()
  44. net.to_float(ms.float16)
  45. net.add_flags_recursive(fp16=False)
  46. input_data = Tensor(np.ones([5]).astype(np.float32))
  47. net(input_data)
  48. with pytest.raises(TypeError):
  49. net(None)
  50. class AssignOp(nn.Cell):
  51. def __init__(self):
  52. super(AssignOp, self).__init__()
  53. self.b = Parameter(initializer('ones', [5]), name='b')
  54. def construct(self, w):
  55. self.b = w
  56. return w
  57. def test_assign_by_operator():
  58. context.set_context(mode=context.GRAPH_MODE)
  59. net = AssignOp()
  60. net.to_float(ms.float16)
  61. input_data = Tensor(np.ones([5]).astype(np.float32))
  62. net(input_data)
  63. class NetScatterNdUpdate(nn.Cell):
  64. def __init__(self):
  65. super(NetScatterNdUpdate, self).__init__()
  66. self.b = Parameter(initializer('ones', [5, 5]), name='b')
  67. self.scatter = P.ScatterNdUpdate()
  68. def construct(self, idx, x):
  69. return self.scatter(self.b, idx, x)
  70. def test_scatter_nd_update():
  71. context.set_context(mode=context.GRAPH_MODE)
  72. net = NetScatterNdUpdate()
  73. x = Tensor(np.ones([5]).astype(np.float16))
  74. idx = Tensor(np.ones([1]).astype(np.int32))
  75. net(idx, x)