|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """test eval"""
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.api import _executor
- from ..ut_filter import non_graph_engine
-
-
- class Net(nn.Cell):
- """Net definition"""
-
- def __init__(self,
- cin,
- cout,
- kernel_size,
- stride=1,
- pad_mode='pad',
- padding=0,
- dilation=1,
- group=1,
- has_bias=False,
- weight_init='normal',
- bias_init='zeros'):
- super(Net, self).__init__()
- Tensor(np.ones([6, 3, 3, 3]).astype(np.float32) * 0.01)
- self.conv = nn.Conv2d(cin,
- cout,
- kernel_size,
- stride,
- pad_mode,
- padding,
- dilation,
- group,
- has_bias,
- weight_init,
- bias_init)
-
- def construct(self, input_x):
- return self.conv(input_x)
-
-
- @non_graph_engine
- def test_compile_train_eval():
- """test_compile_train_eval"""
- net = Net(3, 1, (3, 3), bias_init='zeros')
- train_input_data = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
- context.set_context(mode=context.GRAPH_MODE)
-
- ms_executor = _executor
-
- ms_executor.init_dataset("train", 1, 1, [ms.float32], [[1, 3, 32, 32]], (), 'dataset')
-
- ms_executor.compile(net, train_input_data, phase='train')
- ms_executor(net, train_input_data, phase='train')
-
- ms_executor.init_dataset("eval", 1, 1, [ms.float32], [[1, 3, 32, 32]], (), phase='eval_dataset')
-
- valid_input_data = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
- ms_executor.compile(net, valid_input_data, phase='eval')
- ms_executor(net, valid_input_data, phase='eval')
|