You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_eval.py 2.7 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """test eval"""
  16. import numpy as np
  17. import mindspore as ms
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore import context
  21. from mindspore.common.api import _executor
  22. from ..ut_filter import non_graph_engine
  23. class Net(nn.Cell):
  24. """Net definition"""
  25. def __init__(self,
  26. cin,
  27. cout,
  28. kernel_size,
  29. stride=1,
  30. pad_mode='pad',
  31. padding=0,
  32. dilation=1,
  33. group=1,
  34. has_bias=False,
  35. weight_init='normal',
  36. bias_init='zeros'):
  37. super(Net, self).__init__()
  38. Tensor(np.ones([6, 3, 3, 3]).astype(np.float32) * 0.01)
  39. self.conv = nn.Conv2d(cin,
  40. cout,
  41. kernel_size,
  42. stride,
  43. pad_mode,
  44. padding,
  45. dilation,
  46. group,
  47. has_bias,
  48. weight_init,
  49. bias_init)
  50. def construct(self, input_x):
  51. return self.conv(input_x)
  52. @non_graph_engine
  53. def test_compile_train_eval():
  54. """test_compile_train_eval"""
  55. net = Net(3, 1, (3, 3), bias_init='zeros')
  56. train_input_data = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
  57. context.set_context(mode=context.GRAPH_MODE)
  58. ms_executor = _executor
  59. ms_executor.init_dataset("train", 1, 1, [ms.float32], [[1, 3, 32, 32]], (), 'dataset')
  60. ms_executor.compile(net, train_input_data, phase='train')
  61. ms_executor(net, train_input_data, phase='train')
  62. ms_executor.init_dataset("eval", 1, 1, [ms.float32], [[1, 3, 32, 32]], (), phase='eval_dataset')
  63. valid_input_data = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
  64. ms_executor.compile(net, valid_input_data, phase='eval')
  65. ms_executor(net, valid_input_data, phase='eval')