You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_conv.py 2.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """test conv"""
  16. import numpy as np
  17. import mindspore.nn as nn
  18. from mindspore import Tensor
  19. from ..ut_filter import non_graph_engine
  20. weight = Tensor(np.ones([2, 2]))
  21. in_channels = 3
  22. out_channels = 64
  23. class Net(nn.Cell):
  24. """Net definition"""
  25. def __init__(self,
  26. cin,
  27. cout,
  28. kernel_size,
  29. stride=1,
  30. pad_mode='pad',
  31. padding=0,
  32. dilation=1,
  33. group=1,
  34. has_bias=False,
  35. weight_init='normal',
  36. bias_init='zeros'):
  37. super(Net, self).__init__()
  38. Tensor(np.ones([6, 3, 3, 3]).astype(np.float32) * 0.01)
  39. self.conv = nn.Conv2d(cin,
  40. cout,
  41. kernel_size,
  42. stride,
  43. pad_mode,
  44. padding,
  45. dilation,
  46. group,
  47. has_bias,
  48. weight_init,
  49. bias_init)
  50. def construct(self, input_x):
  51. return self.conv(input_x)
  52. @non_graph_engine
  53. def test_compile():
  54. net = Net(3, 6, (3, 3), bias_init='zeros')
  55. input_data = Tensor(np.ones([3, 3, 32, 32]).astype(np.float32) * 0.01)
  56. output = net(input_data)
  57. print(output.asnumpy())
  58. @non_graph_engine
  59. def test_compile2():
  60. net = Net(3, 1, (3, 3), bias_init='zeros')
  61. input_data = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
  62. output = net(input_data)
  63. print(output.asnumpy())
  64. @non_graph_engine
  65. def test_compile3():
  66. net = Net(3, 1, (3, 3), weight_init='ONES')
  67. input_data = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
  68. output = net(input_data)
  69. print(output.asnumpy())