You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_strategy_checkpoint.py 12 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. import mindspore as ms
  16. import mindspore.nn as nn
  17. from mindspore import Tensor, Parameter
  18. from mindspore import context
  19. from mindspore.common.api import _executor
  20. from mindspore.context import set_auto_parallel_context, reset_auto_parallel_context
  21. from mindspore.ops import composite as C
  22. from mindspore.ops import operations as P
  23. from tests.ut.python.ops.test_math_ops import VirtualLoss
  24. # model_parallel test
  25. def test_six_matmul_save():
  26. class NetWithLoss(nn.Cell):
  27. def __init__(self, network):
  28. super(NetWithLoss, self).__init__()
  29. self.loss = VirtualLoss()
  30. self.network = network
  31. def construct(self, x1, x6):
  32. predict = self.network(x1, x6)
  33. return self.loss(predict)
  34. class GradWrap(nn.Cell):
  35. def __init__(self, network):
  36. super(GradWrap, self).__init__()
  37. self.network = network
  38. def construct(self, x1, x6):
  39. return C.grad_all(self.network)(x1, x6)
  40. class Net(nn.Cell):
  41. def __init__(self, strategy1, strategy2, strategy3, strategy4, strategy5, strategy6):
  42. super().__init__()
  43. self.matmul1 = P.MatMul().set_strategy(strategy1)
  44. self.matmul2 = P.MatMul().set_strategy(strategy2)
  45. self.matmul3 = P.MatMul().set_strategy(strategy3)
  46. self.matmul4 = P.MatMul().set_strategy(strategy4)
  47. self.matmul5 = P.MatMul().set_strategy(strategy5)
  48. self.matmul6 = P.MatMul().set_strategy(strategy6)
  49. self.weight1 = Parameter(Tensor(np.ones([32, 64]), dtype=ms.float32), name="weight1")
  50. self.weight2 = Parameter(Tensor(np.ones([64, 64]), dtype=ms.float32), name="weight2")
  51. self.weight3 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight3")
  52. self.weight4 = Parameter(Tensor(np.ones([128, 64]), dtype=ms.float32), name="weight4")
  53. self.weight5 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight5")
  54. self.weight6 = Parameter(Tensor(np.ones([32, 128]), dtype=ms.float32), name="weight6")
  55. def construct(self, x1, x6):
  56. out = self.matmul1(x1, self.weight1)
  57. out = self.matmul2(out, self.weight2)
  58. out = self.matmul3(out, self.weight3)
  59. out = self.matmul4(out, self.weight4)
  60. out = self.matmul5(out, self.weight5)
  61. out = out + self.weight6
  62. out = self.matmul6(out, x6)
  63. return out
  64. reset_auto_parallel_context()
  65. set_auto_parallel_context(device_num=8, global_rank=0, strategy_ckpt_save_file="./strategy_stage1.ckpt")
  66. strategy1 = ((8, 1), (1, 1))
  67. strategy2 = ((1, 8), (8, 1))
  68. strategy3 = ((2, 2), (2, 2))
  69. strategy4 = ((1, 1), (1, 8))
  70. strategy5 = ((4, 2), (2, 1))
  71. strategy6 = ((4, 1), (1, 2))
  72. net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3, strategy4, strategy5, strategy6)))
  73. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  74. net.set_auto_parallel()
  75. x1 = Tensor(np.ones([32, 32]), dtype=ms.float32)
  76. x6 = Tensor(np.ones([128, 32]), dtype=ms.float32)
  77. _executor.compile(net, x1, x6)
  78. # remove matmul2, add matmul7
  79. def test_six_matmul_load():
  80. class NetWithLoss(nn.Cell):
  81. def __init__(self, network):
  82. super(NetWithLoss, self).__init__()
  83. self.loss = VirtualLoss()
  84. self.network = network
  85. def construct(self, x1, x6, x7):
  86. predict = self.network(x1, x6, x7)
  87. return self.loss(predict)
  88. class GradWrap(nn.Cell):
  89. def __init__(self, network):
  90. super(GradWrap, self).__init__()
  91. self.network = network
  92. def construct(self, x1, x6, x7):
  93. return C.grad_all(self.network)(x1, x6, x7)
  94. class Net(nn.Cell):
  95. def __init__(self, strategy1, strategy3, strategy4, strategy5, strategy6, strategy7):
  96. super().__init__()
  97. self.matmul1 = P.MatMul().set_strategy(strategy1)
  98. self.matmul3 = P.MatMul().set_strategy(strategy3)
  99. self.matmul4 = P.MatMul().set_strategy(strategy4)
  100. self.matmul5 = P.MatMul().set_strategy(strategy5)
  101. self.matmul6 = P.MatMul().set_strategy(strategy6)
  102. self.matmul7 = P.MatMul().set_strategy(strategy7)
  103. self.weight1 = Parameter(Tensor(np.ones([32, 64]), dtype=ms.float32), name="weight1")
  104. self.weight3 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight3")
  105. self.weight4 = Parameter(Tensor(np.ones([128, 64]), dtype=ms.float32), name="weight4")
  106. self.weight5 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight5")
  107. self.weight6 = Parameter(Tensor(np.ones([32, 128]), dtype=ms.float32), name="weight6")
  108. def construct(self, x1, x6, x7):
  109. out = self.matmul1(x1, self.weight1)
  110. out = self.matmul3(out, self.weight3)
  111. out = self.matmul4(out, self.weight4)
  112. out = self.matmul5(out, self.weight5)
  113. out = out + self.weight6
  114. out = self.matmul6(out, x6)
  115. out = self.matmul7(out, x7)
  116. return out
  117. reset_auto_parallel_context()
  118. set_auto_parallel_context(device_num=8, global_rank=0, strategy_ckpt_load_file="./strategy_stage1.ckpt")
  119. strategy1 = ((8, 1), (1, 1))
  120. strategy3 = ((8, 1), (1, 1))
  121. strategy4 = ((8, 1), (1, 1))
  122. strategy5 = ((8, 1), (1, 1))
  123. strategy6 = ((8, 1), (1, 1))
  124. strategy7 = ((8, 1), (1, 1))
  125. net = GradWrap(NetWithLoss(Net(strategy1, strategy3, strategy4, strategy5, strategy6, strategy7)))
  126. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  127. net.set_auto_parallel()
  128. x1 = Tensor(np.ones([32, 32]), dtype=ms.float32)
  129. x6 = Tensor(np.ones([128, 32]), dtype=ms.float32)
  130. x7 = Tensor(np.ones([32, 32]), dtype=ms.float32)
  131. _executor.compile(net, x1, x6, x7)
  132. # model_parallel test
  133. def test_six_matmul_save_auto():
  134. class NetWithLoss(nn.Cell):
  135. def __init__(self, network):
  136. super(NetWithLoss, self).__init__()
  137. self.loss = VirtualLoss()
  138. self.network = network
  139. def construct(self, x1, x6):
  140. predict = self.network(x1, x6)
  141. return self.loss(predict)
  142. class GradWrap(nn.Cell):
  143. def __init__(self, network):
  144. super(GradWrap, self).__init__()
  145. self.network = network
  146. def construct(self, x1, x6):
  147. return C.grad_all(self.network)(x1, x6)
  148. class Net(nn.Cell):
  149. def __init__(self):
  150. super().__init__()
  151. self.matmul1 = P.MatMul()
  152. self.matmul2 = P.MatMul()
  153. self.matmul3 = P.MatMul()
  154. self.matmul4 = P.MatMul()
  155. self.matmul5 = P.MatMul()
  156. self.matmul6 = P.MatMul()
  157. self.weight1 = Parameter(Tensor(np.ones([32, 64]), dtype=ms.float32), name="weight1")
  158. self.weight2 = Parameter(Tensor(np.ones([64, 64]), dtype=ms.float32), name="weight2")
  159. self.weight3 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight3")
  160. self.weight4 = Parameter(Tensor(np.ones([128, 64]), dtype=ms.float32), name="weight4")
  161. self.weight5 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight5")
  162. self.weight6 = Parameter(Tensor(np.ones([32, 128]), dtype=ms.float32), name="weight6")
  163. def construct(self, x1, x6):
  164. out = self.matmul1(x1, self.weight1)
  165. out = self.matmul2(out, self.weight2)
  166. out = self.matmul3(out, self.weight3)
  167. out = self.matmul4(out, self.weight4)
  168. out = self.matmul5(out, self.weight5)
  169. out = out + self.weight6
  170. out = self.matmul6(out, x6)
  171. return out
  172. reset_auto_parallel_context()
  173. set_auto_parallel_context(device_num=8, global_rank=0, strategy_ckpt_save_file="./strategy_stage1_auto.ckpt")
  174. net = GradWrap(NetWithLoss(Net()))
  175. context.set_auto_parallel_context(parallel_mode="auto_parallel")
  176. net.set_auto_parallel()
  177. x1 = Tensor(np.ones([32, 32]), dtype=ms.float32)
  178. x6 = Tensor(np.ones([128, 32]), dtype=ms.float32)
  179. _executor.compile(net, x1, x6)
  180. # remove matmul2, add matmul7
  181. def test_six_matmul_load_auto():
  182. class NetWithLoss(nn.Cell):
  183. def __init__(self, network):
  184. super(NetWithLoss, self).__init__()
  185. self.loss = VirtualLoss()
  186. self.network = network
  187. def construct(self, x1, x6, x7):
  188. predict = self.network(x1, x6, x7)
  189. return self.loss(predict)
  190. class GradWrap(nn.Cell):
  191. def __init__(self, network):
  192. super(GradWrap, self).__init__()
  193. self.network = network
  194. def construct(self, x1, x6, x7):
  195. return C.grad_all(self.network)(x1, x6, x7)
  196. class Net(nn.Cell):
  197. def __init__(self, strategy1, strategy3, strategy4, strategy5):
  198. super().__init__()
  199. self.matmul1 = P.MatMul().set_strategy(strategy1)
  200. self.matmul3 = P.MatMul().set_strategy(strategy3)
  201. self.matmul4 = P.MatMul().set_strategy(strategy4)
  202. self.matmul5 = P.MatMul().set_strategy(strategy5)
  203. self.matmul6 = P.MatMul()
  204. self.matmul7 = P.MatMul()
  205. self.weight1 = Parameter(Tensor(np.ones([32, 64]), dtype=ms.float32), name="weight1")
  206. self.weight3 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight3")
  207. self.weight4 = Parameter(Tensor(np.ones([128, 64]), dtype=ms.float32), name="weight4")
  208. self.weight5 = Parameter(Tensor(np.ones([64, 128]), dtype=ms.float32), name="weight5")
  209. self.weight6 = Parameter(Tensor(np.ones([32, 128]), dtype=ms.float32), name="weight6")
  210. def construct(self, x1, x6, x7):
  211. out = self.matmul1(x1, self.weight1)
  212. out = self.matmul3(out, self.weight3)
  213. out = self.matmul4(out, self.weight4)
  214. out = self.matmul5(out, self.weight5)
  215. out = out + self.weight6
  216. out = self.matmul6(out, x6)
  217. out = self.matmul7(out, x7)
  218. return out
  219. reset_auto_parallel_context()
  220. set_auto_parallel_context(device_num=8, global_rank=0, strategy_ckpt_load_file="./strategy_stage1_auto.ckpt")
  221. strategy1 = ((2, 2), (2, 2))
  222. strategy3 = ((2, 2), (2, 2))
  223. strategy4 = ((2, 2), (2, 2))
  224. strategy5 = ((2, 2), (2, 2))
  225. net = GradWrap(NetWithLoss(Net(strategy1, strategy3, strategy4, strategy5)))
  226. context.set_auto_parallel_context(parallel_mode="auto_parallel")
  227. net.set_auto_parallel()
  228. x1 = Tensor(np.ones([32, 32]), dtype=ms.float32)
  229. x6 = Tensor(np.ones([128, 32]), dtype=ms.float32)
  230. x7 = Tensor(np.ones([32, 32]), dtype=ms.float32)
  231. _executor.compile(net, x1, x6, x7)