|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.api import _executor
- from mindspore.ops import composite as C
- from mindspore.ops import functional as F
- from mindspore.ops import operations as P
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x, y):
- return C.grad_all(self.network)(x, y)
-
-
- def test_sum_as_loss():
- class Net(nn.Cell):
- def __init__(self, strategy0, strategy1):
- super().__init__()
- self.fc_nobias = P.MatMul(transpose_b=True).set_strategy(strategy0)
- self.reduce_sum = P.ReduceSum(keep_dims=False).set_strategy(strategy1)
- self.mul = P.Mul().set_strategy(strategy=((), ()))
-
- def construct(self, x, y):
- out = self.fc_nobias(x, y)
- out = self.reduce_sum(out, (0, 1))
- out = self.mul(out, F.scalar_to_array(2.0))
- return out
-
- context.set_auto_parallel_context(device_num=16, global_rank=0)
-
- strategy0 = ((4, 1), (4, 1))
- strategy1 = ((4, 1),)
- net = GradWrap(Net(strategy0, strategy1))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- net.set_auto_parallel()
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([64, 32]), dtype=ms.float32)
- _executor.compile(net, x, y)
|