|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.api import _executor
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
- from tests.ut.python.ops.test_math_ops import VirtualLoss
-
-
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x, y, b):
- predict = self.network(x, y, b)
- return self.loss(predict)
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x, y, b):
- return C.grad_all(self.network)(x, y, b)
-
-
- # model_parallel test
- def test_l2normalize_matmul():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2, strategy3):
- super().__init__()
- self.norm1 = P.L2Normalize(axis=0).set_strategy(strategy1)
- self.norm2 = P.L2Normalize(axis=0).set_strategy(strategy1)
- self.mul1 = P.Mul().set_strategy(strategy2)
- self.mul2 = P.Mul().set_strategy(strategy3)
-
- def construct(self, x, y, b):
- y = self.norm1(y)
- x = self.norm2(x)
- out = self.mul1(x, y)
- out = self.mul2(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((1, 1, 4),)
- strategy2 = ((1, 1, 4), (1, 1, 4))
- strategy3 = ((1, 1, 8), (1, 1, 8))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- net.set_auto_parallel()
-
- x = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
- y = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
- _executor.compile(net, x, y, b)
|