|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.api import _executor
- from mindspore.common.initializer import initializer
- from mindspore.common.parameter import Parameter, ParameterTuple
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE)
-
-
- class NetWithLoss(nn.Cell):
- def __init__(self, network, types, shapes, output_num, strategy3=None, strategy4=None, axis=-1):
- super(NetWithLoss, self).__init__()
- self.get_next = P.GetNext(types, shapes, output_num, "")
- self.one_hot = P.OneHot(axis=axis).set_strategy(strategy3)
- self.on_value = Tensor(1.0, ms.float32)
- self.off_value = Tensor(0.0, ms.float32)
- self.loss = P.SoftmaxCrossEntropyWithLogits().set_strategy(strategy4)
- self.network = network
-
- def construct(self):
- data, label = self.get_next()
- predict = self.network(data)
- label = self.one_hot(label, 64, self.on_value, self.off_value)
- return self.loss(predict, label)[0]
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
- self.weights = ParameterTuple(network.trainable_params())
-
- def construct(self):
- return C.grad_by_list(self.network, self.weights)()
-
-
- def compile_net(net):
- net.set_auto_parallel()
- _executor.compile(net)
-
-
- def test_get_next_single():
- class Net(nn.Cell):
- def __init__(self, channel=1, w=0.25):
- super().__init__()
- self.norm = P.L2Normalize(axis=1)
- self.prelu = P.PReLU()
- self.w = Parameter(initializer(w, [channel,]), name='w')
-
- def construct(self, data):
- x = self.norm(data)
- x = self.prelu(x, self.w)
- return x
-
- net = GradWrap(NetWithLoss(Net(), [ms.float32, ms.int32], [[32, 64], [32]], 2))
- _executor.compile(net)
-
-
- def test_get_next_semi_auto_parallel():
- class Net(nn.Cell):
- def __init__(self, channel=1, w=0.25, strategy1=None, strategy2=None):
- super().__init__()
- self.norm = P.L2Normalize().set_strategy(strategy1)
- self.prelu = P.PReLU().set_strategy(strategy2)
- self.w = Parameter(initializer(w, [channel,]), name='w')
-
- def construct(self, data):
- x = self.norm(data)
- x = self.prelu(x, self.w)
- return x
-
- context.set_auto_parallel_context(device_num=4, global_rank=0)
- network = Net(strategy1=((1, 4),), strategy2=((4, 1), (1,)))
- strategy3 = ((4, 1), (), ())
- strategy4 = ((4, 1), (4, 1))
- net_with_loss = NetWithLoss(network, [ms.float32, ms.int32], [[32, 64], [32]], 2, strategy3=strategy3,
- strategy4=strategy4)
- net = GradWrap(net_with_loss)
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- compile_net(net)
-
-
- def test_get_next_semi_auto_parallel1():
- class Net(nn.Cell):
- def __init__(self, channel=1, w=0.25, strategy1=None, strategy2=None):
- super().__init__()
- self.norm = P.L2Normalize().set_strategy(strategy1)
- self.prelu = P.PReLU().set_strategy(strategy2)
- self.w = Parameter(initializer(w, [channel,]), name='w')
-
- def construct(self, data):
- x = self.norm(data)
- x = self.prelu(x, self.w)
- return x
-
- context.set_auto_parallel_context(device_num=4, global_rank=0)
- network = Net(strategy1=((1, 4),), strategy2=((4, 1), (1,)))
- strategy3 = ((1, 4), (), ())
- strategy4 = ((4, 1), (4, 1))
- net_with_loss = NetWithLoss(network, [ms.float32, ms.int32], [[32, 64], [32]], 2, strategy3=strategy3,
- strategy4=strategy4)
- net = GradWrap(net_with_loss)
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- compile_net(net)
-
-
- def test_get_next_auto_parallel():
- class Net(nn.Cell):
- def __init__(self, channel=1, w=0.25, strategy1=None, strategy2=None):
- super().__init__()
- self.norm = P.L2Normalize().set_strategy(strategy1)
- self.prelu = P.PReLU().set_strategy(strategy2)
- self.w = Parameter(initializer(w, [channel,]), name='w')
-
- def construct(self, data):
- x = self.norm(data)
- x = self.prelu(x, self.w)
- return x
-
- context.set_auto_parallel_context(device_num=4, global_rank=0)
- network = Net()
- net_with_loss = NetWithLoss(network, [ms.float32, ms.int32], [[32, 64], [32]], 2)
- net = GradWrap(net_with_loss)
- context.set_auto_parallel_context(parallel_mode="auto_parallel")
- compile_net(net)
-
-
- def test_only_one_get_next():
- class Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.get_next = P.GetNext([ms.float32, ms.int32], [[32, 64], [32]], 2, "")
-
- def construct(self):
- return self.get_next()
-
- context.set_auto_parallel_context(device_num=4, global_rank=0)
- net = Net()
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- compile_net(net)
|