|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.api import _executor
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
- from tests.ut.python.ops.test_math_ops import VirtualLoss
-
-
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x, y):
- predict = self.network(x, y)
- return self.loss(predict)
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x, y):
- return C.grad_all(self.network)(x, y)
-
-
- class Net(nn.Cell):
- def __init__(self, axis=0, strategy1=None, strategy2=None, shape=None, target=""):
- super().__init__()
- if shape is None:
- shape = [64, 64]
- self.gatherv2 = P.GatherV2().set_strategy(strategy1).add_prim_attr("primitive_target", target)
- self.mul = P.Mul().set_strategy(strategy2)
- self.index = Tensor(np.ones(shape), dtype=ms.int32)
- self.axis = axis
-
- def construct(self, x, y):
- out = self.gatherv2(x, self.index, self.axis)
- out = self.mul(out, y)
- return out
-
-
- def test_gatherv2_semi_auto0():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
- strategy1 = ((1, 8), (1, 1))
- strategy2 = ((4, 2, 1), (4, 2, 1))
- net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2)))
- net.set_auto_parallel()
-
- x = Tensor(np.ones([64, 64]), dtype=ms.float32)
- y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
- _executor.compile(net, x, y)
-
-
- def test_gatherv2_semi_auto1():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
- strategy1 = ((8, 1), (1, 1))
- strategy2 = ((4, 2, 1), (4, 2, 1))
- net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2)))
- net.set_auto_parallel()
-
- x = Tensor(np.ones([64, 64]), dtype=ms.float32)
- y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
- _executor.compile(net, x, y)
-
-
- def test_gatherv2_semi_auto2():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
- strategy1 = ((2, 4), (1, 1))
- strategy2 = ((4, 2, 1), (4, 2, 1))
- net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2)))
- net.set_auto_parallel()
-
- x = Tensor(np.ones([64, 64]), dtype=ms.float32)
- y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
- _executor.compile(net, x, y)
-
-
- def test_gatherv2_semi_auto3():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
- strategy1 = ((1, 8), (1, 1))
- strategy2 = ((4, 2, 1), (4, 2, 1))
- net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2)))
- net.set_auto_parallel()
-
- x = Tensor(np.ones([64, 64]), dtype=ms.float32)
- y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
- _executor.compile(net, x, y)
-
-
- def test_gatherv2_semi_auto4():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
- strategy1 = ((8, 1), (1, 1))
- strategy2 = ((4, 2, 1), (4, 2, 1))
- net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2)))
- net.set_auto_parallel()
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
- _executor.compile(net, x, y)
-
-
- def test_gatherv2_semi_auto5():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
- strategy1 = ((2, 4), (1, 1))
- strategy2 = ((4, 2, 1), (4, 2, 1))
- net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2)))
- net.set_auto_parallel()
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
- _executor.compile(net, x, y)
-
-
- def test_gatherv2_semi_auto6():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
- strategy2 = ((4, 2, 1), (4, 2, 1))
- net = GradWrap(NetWithLoss(Net(0, None, strategy2)))
- net.set_auto_parallel()
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
- _executor.compile(net, x, y)
-
-
- def test_gatherv2_semi_auto7():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
- strategy2 = ((4, 2, 1), (4, 2, 1))
- net = GradWrap(NetWithLoss(Net(1, None, strategy2)))
- net.set_auto_parallel()
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
- _executor.compile(net, x, y)
-
-
- def test_gatherv2_semi_auto8():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
- strategy1 = ((8,), (1, 1))
- strategy2 = ((4, 2), (4, 2))
- net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2)))
- net.set_auto_parallel()
-
- x = Tensor(np.ones([64]), dtype=ms.float32)
- y = Tensor(np.ones([64, 64]), dtype=ms.float32)
- _executor.compile(net, x, y)
-
-
- def test_gatherv2_auto0():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel")
- net = GradWrap(NetWithLoss(Net(0)))
- net.set_auto_parallel()
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
- _executor.compile(net, x, y)
-
-
- def test_gatherv2_auto1():
- context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel")
- net = GradWrap(NetWithLoss(Net(1)))
- net.set_auto_parallel()
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
- _executor.compile(net, x, y)
|