|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore.nn as nn
- from mindspore import Tensor, context
- from mindspore.common.api import _executor
- from mindspore.ops import operations as P
- from ....train_step_wrap import train_step_with_loss_warp
-
-
- class DenseMutMulNet(nn.Cell):
- def __init__(self):
- super(DenseMutMulNet, self).__init__()
- self.fc1 = nn.Dense(128, 768, activation='relu')
- self.fc2 = nn.Dense(128, 768, activation='relu')
- self.fc3 = nn.Dense(128, 768, activation='relu')
- self.fc4 = nn.Dense(768, 768, activation='relu')
- self.relu4 = nn.ReLU()
- self.relu5 = nn.ReLU()
- self.transpose = P.Transpose()
- self.matmul1 = P.MatMul()
- self.matmul2 = P.MatMul()
-
- def construct(self, x):
- q = self.fc1(x)
- k = self.fc2(x)
- v = self.fc3(x)
- k = self.transpose(k, (1, 0))
- c = self.relu4(self.matmul1(q, k))
- s = self.relu5(self.matmul2(c, v))
- s = self.fc4(s)
- return s
-
-
- def test_dmnet_train_step():
- context.reset_auto_parallel_context()
- input_ = Tensor(np.ones([32, 128]).astype(np.float32) * 0.01)
- label = Tensor(np.zeros([32, 768]).astype(np.float32))
- net = DenseMutMulNet()
- net = train_step_with_loss_warp(DenseMutMulNet())
- _executor.compile(net, input_, label)
|