|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor, Parameter
- from mindspore.communication.management import init
- from mindspore.ops import operations as P
-
-
- class DataParallelNet(nn.Cell):
- def __init__(self):
- super(DataParallelNet, self).__init__()
- weight_init = np.random.rand(512, 64).astype(np.float32)
- self.weight = Parameter(Tensor(weight_init), name="weight", layerwise_parallel=False)
- self.fc = P.MatMul()
-
- def construct(self, x):
- x = self.fc(x, self.weight)
- return x
-
-
- class ModelParallelNet(nn.Cell):
- def __init__(self):
- super(ModelParallelNet, self).__init__()
- weight_init = np.random.rand(512, 64).astype(np.float32)
- self.weight = Parameter(Tensor(weight_init), name="weight", layerwise_parallel=True)
- self.fc = P.MatMul()
-
- def construct(self, x):
- x = self.fc(x, self.weight)
- return x
-
-
- def test_param_broadcast():
- context.set_context(mode=context.GRAPH_MODE)
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode="data_parallel", parameter_broadcast=True)
- init()
- network = DataParallelNet()
- network.set_train()
-
- predict = Tensor(np.ones([64, 512]).astype(np.float32) * 0.01)
- _ = network(predict)
- context.reset_auto_parallel_context()
-
-
- def test_param_not_broadcast():
- context.set_context(mode=context.GRAPH_MODE)
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode="data_parallel", parameter_broadcast=False)
- init()
- network = ModelParallelNet()
- network.set_train()
-
- predict = Tensor(np.ones([64, 512]).astype(np.float32) * 0.01)
- _ = network(predict)
- context.reset_auto_parallel_context()
|