|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.parameter import Parameter
- from mindspore.nn.optim import Momentum
- from mindspore.ops import operations as P
- from mindspore.train import Model
- from tests.dataset_mock import MindData
-
- context.set_context(mode=context.GRAPH_MODE)
-
-
- class Dataset(MindData):
- def __init__(self, predict, label, length=3):
- super(Dataset, self).__init__(size=length)
- self.predict = predict
- self.label = label
- self.index = 0
- self.length = length
-
- def __iter__(self):
- return self
-
- def __next__(self):
- if self.index >= self.length:
- raise StopIteration
- self.index += 1
- return self.predict, self.label
-
- def reset(self):
- self.index = 0
-
-
- class CommonNet(nn.Cell):
- def __init__(self):
- super(CommonNet, self).__init__()
- self.weight = Parameter(Tensor(np.ones([256, 64]), dtype=ms.float32), name="mul_weight")
- self.logicalnot = P.LogicalNot().set_strategy(((4, 2),))
- self.equal = P.Equal().set_strategy(((4, 2), (4, 2)))
-
- def construct(self, x, label):
- x = self.equal(x, self.weight)
- x = self.logicalnot(x)
- return x
-
-
- def common_net():
- epoch_size = 1
-
- context.reset_auto_parallel_context()
-
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8)
- predict = Tensor(np.ones([32, 64]), dtype=ms.float32)
- label = Tensor(np.ones([32]), dtype=ms.int32)
- dataset = Dataset(predict, label, 2)
- net = CommonNet()
-
- optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- model = Model(net, optimizer=optimizer)
- model.train(epoch_size, dataset, dataset_sink_mode=False)
-
-
- def test_bool_grad():
- common_net()
|