|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.ops import operations as P
- from mindspore.train.model import Model
-
-
- class CrossEntropyLoss(nn.Cell):
- def __init__(self, reduction='mean'):
- super(CrossEntropyLoss, self).__init__()
-
- self.reduce_mean = P.ReduceMean()
- self.cross_entropy = nn.SoftmaxCrossEntropyWithLogits()
- self.reduction = reduction
-
- def construct(self, logits, label):
- loss = self.cross_entropy(logits, label)
- if self.reduction == 'mean':
- loss = self.reduce_mean(loss, (-1,))
- return loss
-
-
- class DatasetLenet():
- def __init__(self, predict, label, length=3):
- self.predict = predict
- self.label = label
- self.index = 0
- self.length = length
-
- def __iter__(self):
- return self
-
- def __next__(self):
- if self.index >= self.length:
- raise StopIteration
- self.index += 1
- return self.predict, self.label
-
- def reset(self):
- self.index = 0
-
- def get_dataset_size(self):
- return 32
-
- def get_repeat_count(self):
- return 1
-
- def create_tuple_iterator(self):
- return self
-
-
- class Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.conv = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=1, stride=1, pad_mode='valid',
- has_bias=True, weight_init='ones', bias_init='ones')
- self.reduce_mean = P.ReduceMean(keep_dims=False).set_strategy(((1, 1, 1, 8),))
- self.flat = nn.Flatten()
-
- def construct(self, inputs):
- x = self.conv(inputs)
- x = self.reduce_mean(x, -1)
- x = self.flat(x)
- return x
-
-
- def test_bias_add():
- context.set_context(mode=context.GRAPH_MODE)
- context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8)
- input_np = np.ones([16, 3, 32, 32]).astype(np.float32)
- label_np = np.zeros([16, 2048]).astype(np.float32)
- dataset = DatasetLenet(Tensor(input_np), Tensor(label_np), 1)
- net = Net()
- loss = CrossEntropyLoss()
- opt = nn.Momentum(learning_rate=0.01, momentum=0.9, params=net.get_parameters())
- model = Model(network=net, loss_fn=loss, optimizer=opt)
- model.train(epoch=1, train_dataset=dataset, dataset_sink_mode=False)
|