You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_cpu_lenet.py 3.6 kB

5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import mindspore.context as context
  17. import mindspore.nn as nn
  18. from mindspore import Tensor
  19. from mindspore.nn import TrainOneStepCell, WithLossCell
  20. from mindspore.nn.optim import Momentum
  21. from mindspore.ops import operations as P
  22. import ms_service_pb2
  23. class LeNet(nn.Cell):
  24. def __init__(self):
  25. super(LeNet, self).__init__()
  26. self.relu = P.ReLU()
  27. self.batch_size = 32
  28. self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid')
  29. self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid')
  30. self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
  31. self.reshape = P.Reshape()
  32. self.fc1 = nn.Dense(400, 120)
  33. self.fc2 = nn.Dense(120, 84)
  34. self.fc3 = nn.Dense(84, 10)
  35. def construct(self, input_x):
  36. output = self.conv1(input_x)
  37. output = self.relu(output)
  38. output = self.pool(output)
  39. output = self.conv2(output)
  40. output = self.relu(output)
  41. output = self.pool(output)
  42. output = self.reshape(output, (self.batch_size, -1))
  43. output = self.fc1(output)
  44. output = self.relu(output)
  45. output = self.fc2(output)
  46. output = self.relu(output)
  47. output = self.fc3(output)
  48. return output
  49. def train(net, data, label):
  50. learning_rate = 0.01
  51. momentum = 0.9
  52. optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
  53. criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
  54. net_with_criterion = WithLossCell(net, criterion)
  55. train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
  56. train_network.set_train()
  57. res = train_network(data, label)
  58. print("+++++++++Loss+++++++++++++")
  59. print(res)
  60. print("+++++++++++++++++++++++++++")
  61. assert res
  62. return res
  63. def test_lenet(data, label):
  64. context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
  65. net = LeNet()
  66. return train(net, data, label)
  67. if __name__ == '__main__':
  68. tensor = ms_service_pb2.Tensor()
  69. tensor.tensor_shape.dim.extend([32, 1, 32, 32])
  70. # tensor.tensor_shape.dim.add() = 1
  71. # tensor.tensor_shape.dim.add() = 32
  72. # tensor.tensor_shape.dim.add() = 32
  73. tensor.tensor_type = ms_service_pb2.MS_FLOAT32
  74. tensor.data = np.ones([32, 1, 32, 32]).astype(np.float32).tobytes()
  75. data_from_buffer = np.frombuffer(tensor.data, dtype=np.float32)
  76. print(tensor.tensor_shape.dim)
  77. data_from_buffer = data_from_buffer.reshape(tensor.tensor_shape.dim)
  78. print(data_from_buffer.shape)
  79. input_data = Tensor(data_from_buffer * 0.01)
  80. input_label = Tensor(np.ones([32]).astype(np.int32))
  81. test_lenet(input_data, input_label)