|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.nn import TrainOneStepCell, WithLossCell
- from mindspore.nn.optim import Momentum
- from mindspore.ops import operations as P
- import ms_service_pb2
-
-
- class LeNet(nn.Cell):
- def __init__(self):
- super(LeNet, self).__init__()
- self.relu = P.ReLU()
- self.batch_size = 32
-
- self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid')
- self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid')
- self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
- self.reshape = P.Reshape()
- self.fc1 = nn.Dense(400, 120)
- self.fc2 = nn.Dense(120, 84)
- self.fc3 = nn.Dense(84, 10)
-
- def construct(self, input_x):
- output = self.conv1(input_x)
- output = self.relu(output)
- output = self.pool(output)
- output = self.conv2(output)
- output = self.relu(output)
- output = self.pool(output)
- output = self.reshape(output, (self.batch_size, -1))
- output = self.fc1(output)
- output = self.relu(output)
- output = self.fc2(output)
- output = self.relu(output)
- output = self.fc3(output)
- return output
-
-
- def train(net, data, label):
- learning_rate = 0.01
- momentum = 0.9
-
- optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
- criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
- net_with_criterion = WithLossCell(net, criterion)
- train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
- train_network.set_train()
- res = train_network(data, label)
- print("+++++++++Loss+++++++++++++")
- print(res)
- print("+++++++++++++++++++++++++++")
- assert res
- return res
-
- def test_lenet(data, label):
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- net = LeNet()
- return train(net, data, label)
-
- if __name__ == '__main__':
- tensor = ms_service_pb2.Tensor()
- tensor.tensor_shape.dim.extend([32, 1, 32, 32])
- # tensor.tensor_shape.dim.add() = 1
- # tensor.tensor_shape.dim.add() = 32
- # tensor.tensor_shape.dim.add() = 32
- tensor.tensor_type = ms_service_pb2.MS_FLOAT32
- tensor.data = np.ones([32, 1, 32, 32]).astype(np.float32).tobytes()
-
- data_from_buffer = np.frombuffer(tensor.data, dtype=np.float32)
- print(tensor.tensor_shape.dim)
- data_from_buffer = data_from_buffer.reshape(tensor.tensor_shape.dim)
- print(data_from_buffer.shape)
- input_data = Tensor(data_from_buffer * 0.01)
- input_label = Tensor(np.ones([32]).astype(np.int32))
- test_lenet(input_data, input_label)
|