You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 10 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. #################train vgg16 example on cifar10########################
  17. python train.py --data_path=$DATA_HOME --device_id=$DEVICE_ID
  18. """
  19. import argparse
  20. import datetime
  21. import os
  22. import random
  23. import numpy as np
  24. import mindspore.nn as nn
  25. from mindspore import Tensor
  26. from mindspore import context
  27. from mindspore import ParallelMode
  28. from mindspore.communication.management import init, get_rank, get_group_size
  29. from mindspore.nn.optim.momentum import Momentum
  30. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  31. from mindspore.train.model import Model
  32. from mindspore.train.serialization import load_param_into_net, load_checkpoint
  33. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  34. from src.dataset import vgg_create_dataset
  35. from src.dataset import classification_dataset
  36. from src.crossentropy import CrossEntropy
  37. from src.warmup_step_lr import warmup_step_lr
  38. from src.warmup_cosine_annealing_lr import warmup_cosine_annealing_lr
  39. from src.warmup_step_lr import lr_steps
  40. from src.utils.logging import get_logger
  41. from src.utils.util import get_param_groups
  42. from src.vgg import vgg16
  43. random.seed(1)
  44. np.random.seed(1)
  45. def parse_args(cloud_args=None):
  46. """parameters"""
  47. parser = argparse.ArgumentParser('mindspore classification training')
  48. parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
  49. help='device where the code will be implemented. (Default: Ascend)')
  50. parser.add_argument('--device_id', type=int, default=1, help='device id of GPU or Ascend. (Default: None)')
  51. # dataset related
  52. parser.add_argument('--dataset', type=str, choices=["cifar10", "imagenet2012"], default="cifar10")
  53. parser.add_argument('--data_path', type=str, default='', help='train data dir')
  54. # network related
  55. parser.add_argument('--pre_trained', default='', type=str, help='model_path, local pretrained model to load')
  56. parser.add_argument('--lr_gamma', type=float, default=0.1,
  57. help='decrease lr by a factor of exponential lr_scheduler')
  58. parser.add_argument('--eta_min', type=float, default=0., help='eta_min in cosine_annealing scheduler')
  59. parser.add_argument('--T_max', type=int, default=150, help='T-max in cosine_annealing scheduler')
  60. # logging and checkpoint related
  61. parser.add_argument('--log_interval', type=int, default=100, help='logging interval')
  62. parser.add_argument('--ckpt_path', type=str, default='outputs/', help='checkpoint save location')
  63. parser.add_argument('--ckpt_interval', type=int, default=5, help='ckpt_interval')
  64. parser.add_argument('--is_save_on_master', type=int, default=1, help='save ckpt on master or all rank')
  65. # distributed related
  66. parser.add_argument('--is_distributed', type=int, default=0, help='if multi device')
  67. parser.add_argument('--rank', type=int, default=0, help='local rank of distributed')
  68. parser.add_argument('--group_size', type=int, default=1, help='world size of distributed')
  69. args_opt = parser.parse_args()
  70. args_opt = merge_args(args_opt, cloud_args)
  71. if args_opt.dataset == "cifar10":
  72. from src.config import cifar_cfg as cfg
  73. else:
  74. from src.config import imagenet_cfg as cfg
  75. args_opt.label_smooth = cfg.label_smooth
  76. args_opt.label_smooth_factor = cfg.label_smooth_factor
  77. args_opt.lr_scheduler = cfg.lr_scheduler
  78. args_opt.loss_scale = cfg.loss_scale
  79. args_opt.max_epoch = cfg.max_epoch
  80. args_opt.warmup_epochs = cfg.warmup_epochs
  81. args_opt.lr = cfg.lr
  82. args_opt.lr_init = cfg.lr_init
  83. args_opt.lr_max = cfg.lr_max
  84. args_opt.momentum = cfg.momentum
  85. args_opt.weight_decay = cfg.weight_decay
  86. args_opt.per_batch_size = cfg.batch_size
  87. args_opt.num_classes = cfg.num_classes
  88. args_opt.buffer_size = cfg.buffer_size
  89. args_opt.ckpt_save_max = cfg.keep_checkpoint_max
  90. args_opt.pad_mode = cfg.pad_mode
  91. args_opt.padding = cfg.padding
  92. args_opt.has_bias = cfg.has_bias
  93. args_opt.batch_norm = cfg.batch_norm
  94. args_opt.initialize_mode = cfg.initialize_mode
  95. args_opt.has_dropout = cfg.has_dropout
  96. args_opt.lr_epochs = list(map(int, cfg.lr_epochs.split(',')))
  97. args_opt.image_size = list(map(int, cfg.image_size.split(',')))
  98. return args_opt
  99. def merge_args(args_opt, cloud_args):
  100. """dictionary"""
  101. args_dict = vars(args_opt)
  102. if isinstance(cloud_args, dict):
  103. for key_arg in cloud_args.keys():
  104. val = cloud_args[key_arg]
  105. if key_arg in args_dict and val:
  106. arg_type = type(args_dict[key_arg])
  107. if arg_type is not None:
  108. val = arg_type(val)
  109. args_dict[key_arg] = val
  110. return args_opt
  111. if __name__ == '__main__':
  112. args = parse_args()
  113. device_num = int(os.environ.get("DEVICE_NUM", 1))
  114. if args.is_distributed:
  115. if args.device_target == "Ascend":
  116. init()
  117. context.set_context(device_id=args.device_id)
  118. elif args.device_target == "GPU":
  119. init("nccl")
  120. args.rank = get_rank()
  121. args.group_size = get_group_size()
  122. device_num = args.group_size
  123. context.reset_auto_parallel_context()
  124. context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
  125. parameter_broadcast=True, mirror_mean=True)
  126. else:
  127. context.set_context(device_id=args.device_id)
  128. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
  129. # select for master rank save ckpt or all rank save, compatible for model parallel
  130. args.rank_save_ckpt_flag = 0
  131. if args.is_save_on_master:
  132. if args.rank == 0:
  133. args.rank_save_ckpt_flag = 1
  134. else:
  135. args.rank_save_ckpt_flag = 1
  136. # logger
  137. args.outputs_dir = os.path.join(args.ckpt_path,
  138. datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
  139. args.logger = get_logger(args.outputs_dir, args.rank)
  140. if args.dataset == "cifar10":
  141. dataset = vgg_create_dataset(args.data_path, args.image_size, args.per_batch_size, args.rank, args.group_size,
  142. repeat_num=args.max_epoch)
  143. else:
  144. dataset = classification_dataset(args.data_path, args.image_size, args.per_batch_size,
  145. args.rank, args.group_size, repeat_num=args.max_epoch)
  146. batch_num = dataset.get_dataset_size()
  147. args.steps_per_epoch = dataset.get_dataset_size()
  148. args.logger.save_args(args)
  149. # network
  150. args.logger.important_info('start create network')
  151. # get network and init
  152. network = vgg16(args.num_classes, args)
  153. # pre_trained
  154. if args.pre_trained:
  155. load_param_into_net(network, load_checkpoint(args.pre_trained))
  156. # lr scheduler
  157. if args.lr_scheduler == 'exponential':
  158. lr = warmup_step_lr(args.lr,
  159. args.lr_epochs,
  160. args.steps_per_epoch,
  161. args.warmup_epochs,
  162. args.max_epoch,
  163. gamma=args.lr_gamma,
  164. )
  165. elif args.lr_scheduler == 'cosine_annealing':
  166. lr = warmup_cosine_annealing_lr(args.lr,
  167. args.steps_per_epoch,
  168. args.warmup_epochs,
  169. args.max_epoch,
  170. args.T_max,
  171. args.eta_min)
  172. elif args.lr_scheduler == 'step':
  173. lr = lr_steps(0, lr_init=args.lr_init, lr_max=args.lr_max, warmup_epochs=args.warmup_epochs,
  174. total_epochs=args.max_epoch, steps_per_epoch=batch_num)
  175. else:
  176. raise NotImplementedError(args.lr_scheduler)
  177. # optimizer
  178. opt = Momentum(params=get_param_groups(network),
  179. learning_rate=Tensor(lr),
  180. momentum=args.momentum,
  181. weight_decay=args.weight_decay,
  182. loss_scale=args.loss_scale)
  183. if args.dataset == "cifar10":
  184. loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
  185. model = Model(network, loss_fn=loss, optimizer=opt, metrics={'acc'},
  186. amp_level="O2", keep_batchnorm_fp32=False, loss_scale_manager=None)
  187. else:
  188. if not args.label_smooth:
  189. args.label_smooth_factor = 0.0
  190. loss = CrossEntropy(smooth_factor=args.label_smooth_factor, num_classes=args.num_classes)
  191. loss_scale_manager = FixedLossScaleManager(args.loss_scale, drop_overflow_update=False)
  192. model = Model(network, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale_manager, amp_level="O2")
  193. # define callbacks
  194. time_cb = TimeMonitor(data_size=batch_num)
  195. loss_cb = LossMonitor(per_print_times=batch_num)
  196. callbacks = [time_cb, loss_cb]
  197. if args.rank_save_ckpt_flag:
  198. ckpt_config = CheckpointConfig(save_checkpoint_steps=args.ckpt_interval * args.steps_per_epoch,
  199. keep_checkpoint_max=args.ckpt_save_max)
  200. ckpt_cb = ModelCheckpoint(config=ckpt_config,
  201. directory=args.outputs_dir,
  202. prefix='{}'.format(args.rank))
  203. callbacks.append(ckpt_cb)
  204. model.train(args.max_epoch, dataset, callbacks=callbacks)