|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Eval"""
- import os
- import time
- import argparse
- import datetime
- import glob
- import numpy as np
- import mindspore.nn as nn
-
- from mindspore import Tensor, context
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.train.model import Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.ops import operations as P
- from mindspore.ops import functional as F
- from mindspore.common import dtype as mstype
-
- from src.utils.logging import get_logger
- from src.vgg import vgg16
- from src.dataset import vgg_create_dataset
- from src.dataset import classification_dataset
-
-
- class ParameterReduce(nn.Cell):
- """ParameterReduce"""
- def __init__(self):
- super(ParameterReduce, self).__init__()
- self.cast = P.Cast()
- self.reduce = P.AllReduce()
-
- def construct(self, x):
- one = self.cast(F.scalar_to_array(1.0), mstype.float32)
- out = x * one
- ret = self.reduce(out)
- return ret
-
-
- def parse_args(cloud_args=None):
- """parse_args"""
- parser = argparse.ArgumentParser('mindspore classification test')
- parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
- help='device where the code will be implemented. (Default: Ascend)')
- # dataset related
- parser.add_argument('--dataset', type=str, choices=["cifar10", "imagenet2012"], default="cifar10")
- parser.add_argument('--data_path', type=str, default='', help='eval data dir')
- parser.add_argument('--per_batch_size', default=32, type=int, help='batch size for per npu')
- # network related
- parser.add_argument('--graph_ckpt', type=int, default=1, help='graph ckpt or feed ckpt')
- parser.add_argument('--pre_trained', default='', type=str, help='fully path of pretrained model to load. '
- 'If it is a direction, it will test all ckpt')
-
- # logging related
- parser.add_argument('--log_path', type=str, default='outputs/', help='path to save log')
- parser.add_argument('--rank', type=int, default=0, help='local rank of distributed')
- parser.add_argument('--group_size', type=int, default=1, help='world size of distributed')
-
- args_opt = parser.parse_args()
- args_opt = merge_args(args_opt, cloud_args)
-
- if args_opt.dataset == "cifar10":
- from src.config import cifar_cfg as cfg
- else:
- from src.config import imagenet_cfg as cfg
-
- args_opt.image_size = cfg.image_size
- args_opt.num_classes = cfg.num_classes
- args_opt.per_batch_size = cfg.batch_size
- args_opt.momentum = cfg.momentum
- args_opt.weight_decay = cfg.weight_decay
- args_opt.buffer_size = cfg.buffer_size
- args_opt.pad_mode = cfg.pad_mode
- args_opt.padding = cfg.padding
- args_opt.has_bias = cfg.has_bias
- args_opt.batch_norm = cfg.batch_norm
- args_opt.initialize_mode = cfg.initialize_mode
- args_opt.has_dropout = cfg.has_dropout
-
- args_opt.image_size = list(map(int, args_opt.image_size.split(',')))
-
- return args_opt
-
-
- def get_top5_acc(top5_arg, gt_class):
- sub_count = 0
- for top5, gt in zip(top5_arg, gt_class):
- if gt in top5:
- sub_count += 1
- return sub_count
-
-
- def merge_args(args, cloud_args):
- """merge_args"""
- args_dict = vars(args)
- if isinstance(cloud_args, dict):
- for key in cloud_args.keys():
- val = cloud_args[key]
- if key in args_dict and val:
- arg_type = type(args_dict[key])
- if arg_type is not type(None):
- val = arg_type(val)
- args_dict[key] = val
- return args
-
-
- def test(cloud_args=None):
- """test"""
- args = parse_args(cloud_args)
- context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True,
- device_target=args.device_target, save_graphs=False)
- if os.getenv('DEVICE_ID', "not_set").isdigit():
- context.set_context(device_id=int(os.getenv('DEVICE_ID')))
-
- args.outputs_dir = os.path.join(args.log_path,
- datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
-
- args.logger = get_logger(args.outputs_dir, args.rank)
- args.logger.save_args(args)
-
- if args.dataset == "cifar10":
- net = vgg16(num_classes=args.num_classes, args=args)
- opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, args.momentum,
- weight_decay=args.weight_decay)
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
- model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
-
- param_dict = load_checkpoint(args.pre_trained)
- load_param_into_net(net, param_dict)
- net.set_train(False)
- dataset = vgg_create_dataset(args.data_path, args.image_size, args.per_batch_size, training=False)
- res = model.eval(dataset)
- print("result: ", res)
- else:
- # network
- args.logger.important_info('start create network')
- if os.path.isdir(args.pre_trained):
- models = list(glob.glob(os.path.join(args.pre_trained, '*.ckpt')))
- print(models)
- if args.graph_ckpt:
- f = lambda x: -1 * int(os.path.splitext(os.path.split(x)[-1])[0].split('-')[-1].split('_')[0])
- else:
- f = lambda x: -1 * int(os.path.splitext(os.path.split(x)[-1])[0].split('_')[-1])
- args.models = sorted(models, key=f)
- else:
- args.models = [args.pre_trained,]
-
- for model in args.models:
- dataset = classification_dataset(args.data_path, args.image_size, args.per_batch_size, mode='eval')
- eval_dataloader = dataset.create_tuple_iterator()
- network = vgg16(args.num_classes, args, phase="test")
-
- # pre_trained
- load_param_into_net(network, load_checkpoint(model))
- network.add_flags_recursive(fp16=True)
-
- img_tot = 0
- top1_correct = 0
- top5_correct = 0
-
- network.set_train(False)
- t_end = time.time()
- it = 0
- for data, gt_classes in eval_dataloader:
- output = network(Tensor(data, mstype.float32))
- output = output.asnumpy()
-
- top1_output = np.argmax(output, (-1))
- top5_output = np.argsort(output)[:, -5:]
-
- t1_correct = np.equal(top1_output, gt_classes).sum()
- top1_correct += t1_correct
- top5_correct += get_top5_acc(top5_output, gt_classes)
- img_tot += args.per_batch_size
-
- if args.rank == 0 and it == 0:
- t_end = time.time()
- it = 1
- if args.rank == 0:
- time_used = time.time() - t_end
- fps = (img_tot - args.per_batch_size) * args.group_size / time_used
- args.logger.info('Inference Performance: {:.2f} img/sec'.format(fps))
- results = [[top1_correct], [top5_correct], [img_tot]]
- args.logger.info('before results={}'.format(results))
- results = np.array(results)
-
- args.logger.info('after results={}'.format(results))
- top1_correct = results[0, 0]
- top5_correct = results[1, 0]
- img_tot = results[2, 0]
- acc1 = 100.0 * top1_correct / img_tot
- acc5 = 100.0 * top5_correct / img_tot
- args.logger.info('after allreduce eval: top1_correct={}, tot={},'
- 'acc={:.2f}%(TOP1)'.format(top1_correct, img_tot, acc1))
- args.logger.info('after allreduce eval: top5_correct={}, tot={},'
- 'acc={:.2f}%(TOP5)'.format(top5_correct, img_tot, acc5))
-
-
- if __name__ == "__main__":
- test()
|