|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """train_criteo."""
- import os
- from os.path import join
- import json
- import argparse
- from warnings import warn
- from hparams import hparams, hparams_debug_string
-
- from mindspore import context, Tensor
- from mindspore.context import ParallelMode
- from mindspore.communication.management import init, get_rank, get_group_size
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.nn.optim import Adam
- from mindspore.nn import TrainOneStepCell
- from mindspore.train import Model
- from src.lr_generator import get_lr
- from src.dataset import get_data_loaders
- from src.loss import NetWithLossClass
- from src.callback import Monitor
- from wavenet_vocoder import WaveNet
- from wavenet_vocoder.util import is_mulaw_quantize, is_scalar_input
-
- parser = argparse.ArgumentParser(description='TTS training')
- parser.add_argument('--data_path', type=str, required=True, default='',
- help='Directory contains preprocessed features.')
- parser.add_argument('--preset', type=str, required=True, default='', help='Path of preset parameters (json).')
- parser.add_argument('--checkpoint_dir', type=str, default='./checkpoints_test',
- help='Directory where to save model checkpoints [default: checkpoints].')
- parser.add_argument('--checkpoint', type=str, default='', help='Restore model from checkpoint path if given.')
- parser.add_argument('--speaker_id', type=str, default='',
- help=' Use specific speaker of data in case for multi-speaker datasets.')
- parser.add_argument('--is_distributed', action="store_true", default=False, help='Distributed training')
- args = parser.parse_args()
-
- if __name__ == '__main__':
- if args.is_distributed:
- init('nccl')
- rank_id = get_rank()
- group_size = get_group_size()
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
- gradients_mean=True)
- else:
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
- rank_id = 0
- group_size = 1
-
- speaker_id = int(args.speaker_id) if args.speaker_id != '' else None
- if args.preset is not None:
- with open(args.preset) as f:
- hparams.parse_json(f.read())
-
- assert hparams.name == "wavenet_vocoder"
- print(hparams_debug_string())
- fs = hparams.sample_rate
- os.makedirs(args.checkpoint_dir, exist_ok=True)
-
- output_json_path = join(args.checkpoint_dir, "hparams.json")
- with open(output_json_path, "w") as f:
- json.dump(hparams.values(), f, indent=2)
-
- data_loaders = get_data_loaders(args.data_path, args.speaker_id, hparams=hparams, rank_id=rank_id,
- group_size=group_size)
- step_size_per_epoch = data_loaders.get_dataset_size()
-
- if is_mulaw_quantize(hparams.input_type):
- if hparams.out_channels != hparams.quantize_channels:
- raise RuntimeError(
- "out_channels must equal to quantize_chennels if input_type is 'mulaw-quantize'")
- if hparams.upsample_conditional_features and hparams.cin_channels < 0:
- s = "Upsample conv layers were specified while local conditioning disabled. "
- s += "Notice that upsample conv layers will never be used."
- warn(s)
-
- upsample_params = hparams.upsample_params
- upsample_params["cin_channels"] = hparams.cin_channels
- upsample_params["cin_pad"] = hparams.cin_pad
- model = WaveNet(
- out_channels=hparams.out_channels,
- layers=hparams.layers,
- stacks=hparams.stacks,
- residual_channels=hparams.residual_channels,
- gate_channels=hparams.gate_channels,
- skip_out_channels=hparams.skip_out_channels,
- cin_channels=hparams.cin_channels,
- gin_channels=hparams.gin_channels,
- n_speakers=hparams.n_speakers,
- dropout=hparams.dropout,
- kernel_size=hparams.kernel_size,
- cin_pad=hparams.cin_pad,
- upsample_conditional_features=hparams.upsample_conditional_features,
- upsample_params=upsample_params,
- scalar_input=is_scalar_input(hparams.input_type),
- output_distribution=hparams.output_distribution,
- )
- loss_net = NetWithLossClass(model, hparams)
- lr = get_lr(hparams.optimizer_params["lr"], hparams.nepochs, step_size_per_epoch)
- lr = Tensor(lr)
-
- if args.checkpoint != '':
- param_dict = load_checkpoint(args.pre_trained_model_path)
- load_param_into_net(model, param_dict)
- print('Successfully loading the pre-trained model')
-
- weights = model.trainable_params()
- optimizer = Adam(weights, learning_rate=lr, loss_scale=1024.)
- train_net = TrainOneStepCell(loss_net, optimizer)
-
- model = Model(train_net)
- lr_cb = Monitor(lr)
- callback_list = [lr_cb]
- if args.is_distributed:
- ckpt_path = os.path.join(args.checkpoint_dir, 'ckpt_' + str(get_rank()) + '/')
- else:
- ckpt_path = args.checkpoint_dir
- config_ck = CheckpointConfig(save_checkpoint_steps=step_size_per_epoch, keep_checkpoint_max=10)
- ckpt_cb = ModelCheckpoint(prefix='wavenet', directory=ckpt_path, config=config_ck)
- callback_list.append(ckpt_cb)
- model.train(hparams.nepochs, data_loaders, callbacks=callback_list)
|