You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 6.6 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # less required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train SSD and get checkpoint files."""
  16. import os
  17. import argparse
  18. import mindspore.nn as nn
  19. from mindspore import context, Tensor
  20. from mindspore.communication.management import init
  21. from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor
  22. from mindspore.train import Model, ParallelMode
  23. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  24. from mindspore.model_zoo.ssd import SSD300, SSDWithLossCell, TrainingWrapper, ssd_mobilenet_v2
  25. from config import ConfigSSD
  26. from dataset import create_ssd_dataset, data_to_mindrecord_byte_image
  27. from util import get_lr, init_net_param
  28. def main():
  29. parser = argparse.ArgumentParser(description="SSD training")
  30. parser.add_argument("--only_create_dataset", type=bool, default=False, help="If set it true, only create "
  31. "Mindrecord, default is False.")
  32. parser.add_argument("--distribute", type=bool, default=False, help="Run distribute, default is False.")
  33. parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
  34. parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
  35. parser.add_argument("--lr", type=float, default=0.1, help="Learning rate, default is 0.1.")
  36. parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink.")
  37. parser.add_argument("--dataset", type=str, default="coco", help="Dataset, defalut is coco.")
  38. parser.add_argument("--epoch_size", type=int, default=250, help="Epoch size, default is 250.")
  39. parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.")
  40. parser.add_argument("--pre_trained", type=str, default=None, help="Pretrained Checkpoint file path.")
  41. parser.add_argument("--pre_trained_epoch_size", type=int, default=0, help="Pretrained epoch size.")
  42. parser.add_argument("--save_checkpoint_epochs", type=int, default=10, help="Save checkpoint epochs, default is 5.")
  43. parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.")
  44. args_opt = parser.parse_args()
  45. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
  46. if args_opt.distribute:
  47. device_num = args_opt.device_num
  48. context.reset_auto_parallel_context()
  49. context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True,
  50. device_num=device_num)
  51. init()
  52. rank = args_opt.device_id % device_num
  53. else:
  54. rank = 0
  55. device_num = 1
  56. print("Start create dataset!")
  57. # It will generate mindrecord file in args_opt.mindrecord_dir,
  58. # and the file name is ssd.mindrecord0, 1, ... file_num.
  59. config = ConfigSSD()
  60. prefix = "ssd.mindrecord"
  61. mindrecord_dir = config.MINDRECORD_DIR
  62. mindrecord_file = os.path.join(mindrecord_dir, prefix + "0")
  63. if not os.path.exists(mindrecord_file):
  64. if not os.path.isdir(mindrecord_dir):
  65. os.makedirs(mindrecord_dir)
  66. if args_opt.dataset == "coco":
  67. if os.path.isdir(config.COCO_ROOT):
  68. print("Create Mindrecord.")
  69. data_to_mindrecord_byte_image("coco", True, prefix)
  70. print("Create Mindrecord Done, at {}".format(mindrecord_dir))
  71. else:
  72. print("COCO_ROOT not exits.")
  73. else:
  74. if os.path.isdir(config.IMAGE_DIR) and os.path.exists(config.ANNO_PATH):
  75. print("Create Mindrecord.")
  76. data_to_mindrecord_byte_image("other", True, prefix)
  77. print("Create Mindrecord Done, at {}".format(mindrecord_dir))
  78. else:
  79. print("IMAGE_DIR or ANNO_PATH not exits.")
  80. if not args_opt.only_create_dataset:
  81. loss_scale = float(args_opt.loss_scale)
  82. # When create MindDataset, using the fitst mindrecord file, such as ssd.mindrecord0.
  83. dataset = create_ssd_dataset(mindrecord_file, repeat_num=args_opt.epoch_size,
  84. batch_size=args_opt.batch_size, device_num=device_num, rank=rank)
  85. dataset_size = dataset.get_dataset_size()
  86. print("Create dataset done!")
  87. backbone = ssd_mobilenet_v2()
  88. ssd = SSD300(backbone=backbone, config=config)
  89. net = SSDWithLossCell(ssd, config)
  90. init_net_param(net)
  91. # checkpoint
  92. ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs)
  93. ckpoint_cb = ModelCheckpoint(prefix="ssd", directory=None, config=ckpt_config)
  94. if args_opt.pre_trained:
  95. if args_opt.pre_trained_epoch_size <= 0:
  96. raise KeyError("pre_trained_epoch_size must be greater than 0.")
  97. param_dict = load_checkpoint(args_opt.pre_trained)
  98. load_param_into_net(net, param_dict)
  99. lr = Tensor(get_lr(global_step=0, lr_init=0.001, lr_end=0.001 * args_opt.lr, lr_max=args_opt.lr,
  100. warmup_epochs=2,
  101. total_epochs=args_opt.epoch_size,
  102. steps_per_epoch=dataset_size))
  103. opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, 0.9, 1e-4, loss_scale)
  104. net = TrainingWrapper(net, opt, loss_scale)
  105. callback = [TimeMonitor(data_size=dataset_size), LossMonitor(), ckpoint_cb]
  106. model = Model(net)
  107. dataset_sink_mode = False
  108. if args_opt.mode == "sink":
  109. print("In sink mode, one epoch return a loss.")
  110. dataset_sink_mode = True
  111. print("Start train SSD, the first epoch will be slower because of the graph compilation.")
  112. model.train(args_opt.epoch_size, dataset, callbacks=callback, dataset_sink_mode=dataset_sink_mode)
  113. if __name__ == '__main__':
  114. main()