You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

lr_generator.py 2.0 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """learning rate generator"""
  16. import math
  17. import numpy as np
  18. def linear_warmup_lr(current_step, warmup_steps, base_lr, init_lr):
  19. lr_inc = (float(base_lr) - float(init_lr)) / float(warmup_steps)
  20. lr = float(init_lr) + lr_inc * current_step
  21. return lr
  22. def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch):
  23. """
  24. generate learning rate array with cosine
  25. Args:
  26. lr(float): base learning rate
  27. steps_per_epoch(int): steps size of one epoch
  28. warmup_epochs(int): number of warmup epochs
  29. max_epoch(int): total epochs of training
  30. Returns:
  31. np.array, learning rate array
  32. """
  33. base_lr = lr
  34. warmup_init_lr = 0
  35. total_steps = int(max_epoch * steps_per_epoch)
  36. warmup_steps = int(warmup_epochs * steps_per_epoch)
  37. decay_steps = total_steps - warmup_steps
  38. lr_each_step = []
  39. for i in range(total_steps):
  40. if i < warmup_steps:
  41. lr = linear_warmup_lr(i + 1, warmup_steps, base_lr, warmup_init_lr)
  42. else:
  43. linear_decay = (total_steps - i) / decay_steps
  44. cosine_decay = 0.5 * (1 + math.cos(math.pi * 2 * 0.47 * i / decay_steps))
  45. decayed = linear_decay * cosine_decay + 0.00001
  46. lr = base_lr * decayed
  47. lr_each_step.append(lr)
  48. return np.array(lr_each_step).astype(np.float32)