You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataset.py 3.1 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. create train or eval dataset.
  17. """
  18. import os
  19. import mindspore.common.dtype as mstype
  20. import mindspore.dataset.engine as de
  21. import mindspore.dataset.transforms.vision.c_transforms as C
  22. import mindspore.dataset.transforms.c_transforms as C2
  23. from config import config
  24. def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
  25. """
  26. create a train or evaluate dataset
  27. Args:
  28. dataset_path(string): the path of dataset.
  29. do_train(bool): whether dataset is used for train or eval.
  30. repeat_num(int): the repeat times of dataset. Default: 1
  31. batch_size(int): the batch size of dataset. Default: 32
  32. Returns:
  33. dataset
  34. """
  35. device_num = int(os.getenv("RANK_SIZE"))
  36. rank_id = int(os.getenv("RANK_ID"))
  37. if device_num == 1:
  38. ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True)
  39. else:
  40. ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True,
  41. num_shards=device_num, shard_id=rank_id)
  42. resize_height = 224
  43. rescale = 1.0 / 255.0
  44. shift = 0.0
  45. # define map operations
  46. decode_op = C.Decode()
  47. random_resize_crop_op = C.RandomResizedCrop(resize_height, (0.08, 1.0), (0.75, 1.33), max_attempts=100)
  48. horizontal_flip_op = C.RandomHorizontalFlip(rank_id / (rank_id + 1))
  49. resize_op_256 = C.Resize((256, 256))
  50. center_crop = C.CenterCrop(224)
  51. rescale_op = C.Rescale(rescale, shift)
  52. normalize_op = C.Normalize((0.475, 0.451, 0.392), (0.275, 0.267, 0.278))
  53. changeswap_op = C.HWC2CHW()
  54. trans = []
  55. if do_train:
  56. trans = [decode_op,
  57. random_resize_crop_op,
  58. horizontal_flip_op,
  59. rescale_op,
  60. normalize_op,
  61. changeswap_op]
  62. else:
  63. trans = [decode_op,
  64. resize_op_256,
  65. center_crop,
  66. rescale_op,
  67. normalize_op,
  68. changeswap_op]
  69. type_cast_op = C2.TypeCast(mstype.int32)
  70. ds = ds.map(input_columns="image", operations=trans)
  71. ds = ds.map(input_columns="label", operations=type_cast_op)
  72. # apply shuffle operations
  73. ds = ds.shuffle(buffer_size=config.buffer_size)
  74. # apply batch operations
  75. ds = ds.batch(batch_size, drop_remainder=True)
  76. # apply dataset repeat operation
  77. ds = ds.repeat(repeat_num)
  78. return ds