|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """train_criteo."""
- import os
- import sys
- import time
- import argparse
-
- from mindspore import context
- from mindspore.train.model import Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from src.deepfm import ModelBuilder, AUCMetric
- from src.config import DataConfig, ModelConfig, TrainConfig
- from src.dataset import create_dataset
-
- sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
- parser = argparse.ArgumentParser(description='CTR Prediction')
- parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
- parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
-
- args_opt, _ = parser.parse_known_args()
- device_id = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id)
-
-
- def add_write(file_path, print_str):
- with open(file_path, 'a+', encoding='utf-8') as file_out:
- file_out.write(print_str + '\n')
-
-
- if __name__ == '__main__':
- data_config = DataConfig()
- model_config = ModelConfig()
- train_config = TrainConfig()
-
- ds_eval = create_dataset(args_opt.dataset_path, train_mode=False,
- epochs=1, batch_size=train_config.batch_size)
- model_builder = ModelBuilder(ModelConfig, TrainConfig)
- train_net, eval_net = model_builder.get_train_eval_net()
- train_net.set_train()
- eval_net.set_train(False)
- auc_metric = AUCMetric()
- model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric})
- param_dict = load_checkpoint(args_opt.checkpoint_path)
- load_param_into_net(eval_net, param_dict)
-
- start = time.time()
- res = model.eval(ds_eval)
- eval_time = time.time() - start
- time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
- out_str = f'{time_str} AUC: {list(res.values())[0]}, eval time: {eval_time}s.'
- print(out_str)
- add_write('./auc.log', str(out_str))
|