You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_gelu.py 3.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. from mindspore import Tensor
  19. from mindspore.nn import Cell
  20. import mindspore.ops.operations as P
  21. import mindspore.ops.operations._grad_ops as G
  22. class GeluNet(Cell):
  23. def __init__(self):
  24. super(GeluNet, self).__init__()
  25. self.gelu = P.GeLU()
  26. def construct(self, x):
  27. return self.gelu(x)
  28. class GeluGradNet(Cell):
  29. def __init__(self):
  30. super(GeluGradNet, self).__init__()
  31. self.gelu_grad = G.GeLUGrad()
  32. def construct(self, dy, x, y):
  33. return self.gelu_grad(dy, x, y)
  34. def CalGelu(x):
  35. tmp = np.sqrt(2.0 / np.pi) * (x + 0.044715 * x * x * x)
  36. expect = 0.5 * x * (1.0 + np.tanh(tmp))
  37. return expect
  38. def test_gelu():
  39. np.random.seed(0)
  40. input_x = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
  41. net = GeluNet()
  42. result = net(Tensor(input_x))
  43. expect = CalGelu(input_x)
  44. res = np.allclose(expect, result.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True)
  45. assert res
  46. def test_gelu_grad():
  47. np.random.seed(0)
  48. input_dy = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
  49. input_x = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
  50. input_y = CalGelu(input_x)
  51. net = GeluGradNet()
  52. result = net(Tensor(input_dy), Tensor(input_x), Tensor(input_y))
  53. tanh_res = np.tanh(0.7978845608 * (input_x + 0.044715 * input_x * input_x * input_x))
  54. mul_right = 0.7978845608 + 0.1070322244 * input_x * input_x
  55. dx = 0.5 * (1.0 + tanh_res) + 0.5 * input_x * (1.0 - tanh_res * tanh_res) * mul_right
  56. expect = input_dy * dx
  57. res = np.allclose(expect, result.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True)
  58. assert res
  59. @pytest.mark.level0
  60. @pytest.mark.platform_x86_gpu_training
  61. @pytest.mark.env_onecard
  62. def test_gelu_gpu():
  63. context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU")
  64. test_gelu()
  65. def test_gelu_ascend():
  66. context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
  67. test_gelu()
  68. @pytest.mark.level0
  69. @pytest.mark.platform_x86_gpu_training
  70. @pytest.mark.env_onecard
  71. def test_gelu_grad_gpu():
  72. context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU")
  73. test_gelu_grad()
  74. def test_gelu_grad_ascend():
  75. context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
  76. test_gelu_grad()