|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
- from mindspore import context
- from mindspore.context import set_auto_parallel_context
- import mindspore.nn as nn
- from mindspore.ops import operations as P
- from mindspore import Tensor
- from tests.ut.python.ops.test_math_ops import VirtualLoss
- import mindspore as ms
- from mindspore.common.api import _executor
- from mindspore.ops import composite as C
-
-
- # model_parallel test
- # export PARALLEL_CHECKPOINT_ON=on
- # export PARALLEL_TRAIN_TIMES=4
- def test_six_matmul():
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x1, x2, x3, x4, x5, x6, x7):
- predict = self.network(x1, x2, x3, x4, x5, x6, x7)
- return self.loss(predict)
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x1, x2, x3, x4, x5, x6, x7):
- return C.grad_all(self.network)(x1, x2, x3, x4, x5, x6, x7)
-
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2, strategy3, strategy4, strategy5, strategy6):
- super().__init__()
- self.matmul1 = P.MatMul().set_strategy(strategy1)
- self.matmul2 = P.MatMul().set_strategy(strategy2)
- self.matmul3 = P.MatMul().set_strategy(strategy3)
- self.matmul4 = P.MatMul().set_strategy(strategy4)
- self.matmul5 = P.MatMul().set_strategy(strategy5)
- self.matmul6 = P.MatMul().set_strategy(strategy6)
-
- def construct(self, x1, x2, x3, x4, x5, x6, x7):
- out = self.matmul1(x1, x2)
- out = self.matmul2(out, x3)
- out = self.matmul3(out, x4)
- out = self.matmul4(out, x5)
- out = self.matmul5(out, x6)
- out = self.matmul6(out, x7)
- return out
-
- set_auto_parallel_context(device_num=512, global_rank=0)
- strategy1 = ((8, 1), (1, 1))
- strategy2 = ((1, 8), (8, 1))
- strategy3 = ((2, 2), (2, 2))
- strategy4 = ((4, 2), (2, 4))
- strategy5 = ((2, 4), (4, 2))
- strategy6 = ((4, 4), (4, 4))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3, strategy4, strategy5, strategy6)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x1 = Tensor(np.ones([128, 32]), dtype=ms.float32)
- x2 = Tensor(np.ones([32, 64]), dtype=ms.float32)
- x3 = Tensor(np.ones([64, 64]), dtype=ms.float32)
- x4 = Tensor(np.ones([64, 128]), dtype=ms.float32)
- x5 = Tensor(np.ones([128, 64]), dtype=ms.float32)
- x6 = Tensor(np.ones([64, 32]), dtype=ms.float32)
- x7 = Tensor(np.ones([32, 32]), dtype=ms.float32)
- _executor.compile(net, x1, x2, x3, x4, x5, x6, x7)
-
- # remove matmul2
- def test_six_matmul_repeated1():
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x1, x2, x4, x5, x6, x7):
- predict = self.network(x1, x2, x4, x5, x6, x7)
- return self.loss(predict)
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x1, x2, x4, x5, x6, x7):
- return C.grad_all(self.network)(x1, x2, x4, x5, x6, x7)
-
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy3, strategy4, strategy5, strategy6):
- super().__init__()
- self.matmul1 = P.MatMul().set_strategy(strategy1)
- self.matmul3 = P.MatMul().set_strategy(strategy3)
- self.matmul4 = P.MatMul().set_strategy(strategy4)
- self.matmul5 = P.MatMul().set_strategy(strategy5)
- self.matmul6 = P.MatMul().set_strategy(strategy6)
-
- def construct(self, x1, x2, x4, x5, x6, x7):
- out = self.matmul1(x1, x2)
- out = self.matmul3(out, x4)
- out = self.matmul4(out, x5)
- out = self.matmul5(out, x6)
- out = self.matmul6(out, x7)
- return out
-
- set_auto_parallel_context(device_num=512, global_rank=0)
- strategy1 = ((8, 1), (1, 1))
- strategy3 = ((8, 1), (1, 1))
- strategy4 = ((8, 1), (1, 1))
- strategy5 = ((8, 1), (1, 1))
- strategy6 = ((8, 1), (1, 1))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy3, strategy4, strategy5, strategy6)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x1 = Tensor(np.ones([128, 32]), dtype=ms.float32)
- x2 = Tensor(np.ones([32, 64]), dtype=ms.float32)
- x4 = Tensor(np.ones([64, 128]), dtype=ms.float32)
- x5 = Tensor(np.ones([128, 64]), dtype=ms.float32)
- x6 = Tensor(np.ones([64, 32]), dtype=ms.float32)
- x7 = Tensor(np.ones([32, 32]), dtype=ms.float32)
- _executor.compile(net, x1, x2, x4, x5, x6, x7)
-
- # add matmul7
- def test_six_matmul_repeated2():
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x1, x2, x4, x5, x6, x7, x8):
- predict = self.network(x1, x2, x4, x5, x6, x7, x8)
- return self.loss(predict)
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x1, x2, x4, x5, x6, x7, x8):
- return C.grad_all(self.network)(x1, x2, x4, x5, x6, x7, x8)
-
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy3, strategy4, strategy5, strategy6, strategy7):
- super().__init__()
- self.matmul1 = P.MatMul().set_strategy(strategy1)
- self.matmul3 = P.MatMul().set_strategy(strategy3)
- self.matmul4 = P.MatMul().set_strategy(strategy4)
- self.matmul5 = P.MatMul().set_strategy(strategy5)
- self.matmul6 = P.MatMul().set_strategy(strategy6)
- self.matmul7 = P.MatMul().set_strategy(strategy7)
-
- def construct(self, x1, x2, x4, x5, x6, x7, x8):
- out = self.matmul1(x1, x2)
- out = self.matmul3(out, x4)
- out = self.matmul4(out, x5)
- out = self.matmul5(out, x6)
- out = self.matmul6(out, x7)
- out = self.matmul7(out, x8)
- return out
-
- set_auto_parallel_context(device_num=512, global_rank=0)
- strategy1 = ((8, 1), (1, 1))
- strategy3 = ((8, 1), (1, 1))
- strategy4 = ((8, 1), (1, 1))
- strategy5 = ((8, 1), (1, 1))
- strategy6 = ((8, 1), (1, 1))
- strategy7 = ((8, 1), (1, 1))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy3, strategy4, strategy5, strategy6, strategy7)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x1 = Tensor(np.ones([128, 32]), dtype=ms.float32)
- x2 = Tensor(np.ones([32, 64]), dtype=ms.float32)
- x4 = Tensor(np.ones([64, 128]), dtype=ms.float32)
- x5 = Tensor(np.ones([128, 64]), dtype=ms.float32)
- x6 = Tensor(np.ones([64, 32]), dtype=ms.float32)
- x7 = Tensor(np.ones([32, 32]), dtype=ms.float32)
- x8 = Tensor(np.ones([32, 128]), dtype=ms.float32)
- _executor.compile(net, x1, x2, x4, x5, x6, x7, x8)
-
-
- # add scope2
- def test_six_matmul_repeated3():
- class NetWithLoss(nn.Cell):
- def __init__(self, network1, network2):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network1
- self.network2 = network2
-
- def construct(self, x1, x2, x4, x5, x6, x7, x8, x9, x10):
- predict = self.network(x1, x2, x4, x5, x6, x7, x8)
- predict = self.network2(predict, x9, x10)
- return self.loss(predict)
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x1, x2, x4, x5, x6, x7, x8, x9, x10):
- return C.grad_all(self.network)(x1, x2, x4, x5, x6, x7, x8, x9, x10)
-
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy3, strategy4, strategy5, strategy6, strategy7):
- super().__init__()
- self.matmul1 = P.MatMul().set_strategy(strategy1)
- self.matmul3 = P.MatMul().set_strategy(strategy3)
- self.matmul4 = P.MatMul().set_strategy(strategy4)
- self.matmul5 = P.MatMul().set_strategy(strategy5)
- self.matmul6 = P.MatMul().set_strategy(strategy6)
- self.matmul7 = P.MatMul().set_strategy(strategy7)
-
- def construct(self, x1, x2, x4, x5, x6, x7, x8):
- out = self.matmul1(x1, x2)
- out = self.matmul3(out, x4)
- out = self.matmul4(out, x5)
- out = self.matmul5(out, x6)
- out = self.matmul6(out, x7)
- out = self.matmul7(out, x8)
- return out
-
- class Net1(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul1 = P.MatMul().set_strategy(strategy1)
- self.matmul2 = P.MatMul().set_strategy(strategy2)
-
- def construct(self, x1, x2, x3):
- out = self.matmul1(x1, x2)
- out = self.matmul2(out, x3)
- return out
-
-
- set_auto_parallel_context(device_num=512, global_rank=0)
- strategy1 = ((8, 1), (1, 1))
- strategy3 = ((8, 1), (1, 1))
- strategy4 = ((8, 1), (1, 1))
- strategy5 = ((8, 1), (1, 1))
- strategy6 = ((8, 1), (1, 1))
- strategy7 = ((8, 1), (1, 1))
- strategy8 = ((8, 1), (1, 1))
- strategy9 = ((8, 1), (1, 1))
- net1 = Net(strategy1, strategy3, strategy4, strategy5, strategy6, strategy7)
- net2 = Net1(strategy8, strategy9)
- net = GradWrap(NetWithLoss(net1, net2))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x1 = Tensor(np.ones([128, 32]), dtype=ms.float32)
- x2 = Tensor(np.ones([32, 64]), dtype=ms.float32)
- x4 = Tensor(np.ones([64, 128]), dtype=ms.float32)
- x5 = Tensor(np.ones([128, 64]), dtype=ms.float32)
- x6 = Tensor(np.ones([64, 32]), dtype=ms.float32)
- x7 = Tensor(np.ones([32, 32]), dtype=ms.float32)
- x8 = Tensor(np.ones([32, 128]), dtype=ms.float32)
- x9 = Tensor(np.ones([128, 64]), dtype=ms.float32)
- x10 = Tensor(np.ones([64, 64]), dtype=ms.float32)
- _executor.compile(net, x1, x2, x4, x5, x6, x7, x8, x9, x10)
-
|