You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_step_parallel.py 2.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. import mindspore as ms
  16. from mindspore import context
  17. import mindspore.nn as nn
  18. from mindspore.ops import operations as P
  19. from mindspore import Tensor
  20. from tests.ut.python.ops.test_math_ops import VirtualLoss
  21. from mindspore.common.api import _executor
  22. from mindspore.ops import composite as C
  23. class NetWithLoss(nn.Cell):
  24. def __init__(self, network):
  25. super(NetWithLoss, self).__init__()
  26. self.loss = VirtualLoss()
  27. self.network = network
  28. def construct(self, x, y, b, a):
  29. predict = self.network(x, y, b, a)
  30. return self.loss(predict)
  31. class GradWrap(nn.Cell):
  32. def __init__(self, network):
  33. super(GradWrap, self).__init__()
  34. self.network = network
  35. def construct(self, x, y, b, a):
  36. return C.grad_all(self.network)(x, y, b, a)
  37. def test_two_matmul():
  38. class Net(nn.Cell):
  39. def __init__(self, strategy1, strategy2, strategy3, strategy4):
  40. super().__init__()
  41. self.matmul1 = P.MatMul().set_strategy(strategy1)
  42. self.matmul2 = P.MatMul().set_strategy(strategy2)
  43. self.matmul3 = P.MatMul().set_strategy(strategy3)
  44. self.matmul4 = P.MatMul().set_strategy(strategy4)
  45. def construct(self, x, y, b, a):
  46. out = self.matmul1(x, y)
  47. out1 = self.matmul2(out, b)
  48. out2 = self.matmul3(out, a)
  49. out3 = self.matmul4(out1, out2)
  50. return out3
  51. context.set_auto_parallel_context(device_num=8, global_rank=0)
  52. strategy1 = ((2, 2), (2, 2))
  53. strategy2 = ((1, 8), (8, 1))
  54. strategy3 = ((4, 1), (1, 2))
  55. strategy4 = ((4, 2), (2, 1))
  56. net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3, strategy4)))
  57. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
  58. x = Tensor(np.ones([128, 32]), dtype=ms.float32)
  59. y = Tensor(np.ones([32, 128]), dtype=ms.float32)
  60. b = Tensor(np.ones([128, 128]), dtype=ms.float32)
  61. a = Tensor(np.ones([128, 128]), dtype=ms.float32)
  62. _executor.compile(net, x, y, b, a)