You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_neg.py 2.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. import mindspore as ms
  16. from mindspore import context, Tensor, Parameter
  17. from mindspore.nn import Cell, TrainOneStepCell, Momentum
  18. from mindspore.ops import operations as P
  19. from mindspore.common.api import _executor
  20. class Net(Cell):
  21. def __init__(self, mul_weight, strategy1=None, strategy2=None):
  22. super().__init__()
  23. self.mul = P.Mul().set_strategy(strategy1)
  24. self.neg = P.Neg().set_strategy(strategy2)
  25. self.mul_weight = Parameter(mul_weight, "w1")
  26. def construct(self, x, b):
  27. out = self.mul(x, self.mul_weight)
  28. out = self.neg(out)
  29. return out
  30. _x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
  31. _w1 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
  32. _b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
  33. def compile(net):
  34. optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
  35. train_net = TrainOneStepCell(net, optimizer)
  36. _executor.compile(train_net, _x, _b)
  37. context.reset_auto_parallel_context()
  38. def test_neg_data_parallel():
  39. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
  40. strategy1 = ((16, 1, 1), (16, 1, 1))
  41. strategy2 = ((16, 1, 1), )
  42. net = Net(_w1, strategy1, strategy2)
  43. compile(net)
  44. def test_neg_model_parallel():
  45. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
  46. strategy1 = ((1, 1, 16), (1, 1, 16))
  47. strategy2 = ((1, 1, 16), )
  48. net = Net(_w1, strategy1, strategy2)
  49. compile(net)
  50. def test_neg_hybrid_parallel():
  51. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
  52. strategy1 = ((2, 2, 4), (2, 2, 4))
  53. strategy2 = ((2, 2, 4), )
  54. net = Net(_w1, strategy1, strategy2)
  55. compile(net)
  56. def test_neg_auto_parallel():
  57. context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
  58. net = Net(_w1)
  59. compile(net)
  60. def test_neg_repeat_calc():
  61. context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
  62. strategy1 = ((2, 2, 4), (2, 2, 4))
  63. strategy2 = ((1, 2, 2), )
  64. net = Net(_w1, strategy1, strategy2)
  65. compile(net)