|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
- from mindspore import context
- import mindspore.nn as nn
- from mindspore.ops import operations as P
- from mindspore import Tensor
- from tests.ut.python.ops.test_math_ops import VirtualLoss
- import mindspore as ms
- from mindspore.common.api import _executor
- from mindspore.ops import composite as C
-
-
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x, y, b):
- predict = self.network(x, y, b)
- return self.loss(predict)
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x, y, b):
- return C.grad_all(self.network)(x, y, b)
-
-
- def test_matmul_sub():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.sub = P.Sub().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.sub(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (4, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64, 64]), dtype=ms.float32)
- _executor.compile(net, x, y, b)
-
-
- def test_matmul_add():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.add = P.TensorAdd().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.add(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (4, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64, 64]), dtype=ms.float32)
- _executor.compile(net, x, y, b)
-
-
- def test_matmul_mul():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.mul = P.Mul().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.mul(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (4, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64, 64]), dtype=ms.float32)
- _executor.compile(net, x, y, b)
-
-
- def test_matmul_div():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.div = P.Div().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.div(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (4, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64, 64]), dtype=ms.float32)
- _executor.compile(net, x, y, b)
-
- def test_matmul_greater():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.greater = P.Greater().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.greater(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (4, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64, 64]), dtype=ms.float32)
- _executor.compile(net, x, y, b)
-
- def test_matmul_add_broadcast():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.add = P.TensorAdd().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.add(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (2, ))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64]), dtype=ms.float32)
- _executor.compile(net, x, y, b)
-
-
- def test_matmul_add_broadcast2():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.add = P.TensorAdd().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.add(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 4), (4, 1))
- strategy2 = ((4, 1), (1, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 1]), dtype=ms.float32)
- b = Tensor(np.ones([1, 64]), dtype=ms.float32)
- _executor.compile(net, x, y, b)
-
-
- def test_matmul_sub_broadcast():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.sub = P.Sub().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.sub(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (2, ))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64]), dtype=ms.float32)
- _executor.compile(net, x, y, b)
-
-
- def test_matmul_sub_broadcast2():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.sub = P.Sub().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.sub(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 4), (4, 1))
- strategy2 = ((4, 1), (1, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 1]), dtype=ms.float32)
- b = Tensor(np.ones([1, 64]), dtype=ms.float32)
- _executor.compile(net, x, y, b)
-
-
- def test_matmul_mul_broadcast():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.mul = P.Mul().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.mul(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (2, ))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64]), dtype=ms.float32)
- _executor.compile(net, x, y, b)
-
-
- def test_matmul_mul_broadcast2():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.mul = P.Mul().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.mul(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 4), (4, 1))
- strategy2 = ((4, 1), (1, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 1]), dtype=ms.float32)
- b = Tensor(np.ones([1, 64]), dtype=ms.float32)
- _executor.compile(net, x, y, b)
-
-
- def test_matmul_div_broadcast():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.div = P.Div().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.div(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (2, ))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64]), dtype=ms.float32)
- _executor.compile(net, x, y, b)
-
-
- def test_matmul_div_broadcast2():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.div = P.Div().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.div(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 4), (4, 1))
- strategy2 = ((4, 1), (1, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 1]), dtype=ms.float32)
- b = Tensor(np.ones([1, 64]), dtype=ms.float32)
- _executor.compile(net, x, y, b)
-
- def test_matmul_greater_broadcast():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.greater = P.Greater().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.greater(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (2, ))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64]), dtype=ms.float32)
- _executor.compile(net, x, y, b)
-
-
- def test_matmul_greater_broadcast2():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.greater = P.Greater().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.greater(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 4), (4, 1))
- strategy2 = ((4, 1), (1, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 1]), dtype=ms.float32)
- b = Tensor(np.ones([1, 64]), dtype=ms.float32)
- _executor.compile(net, x, y, b)
-
- def test_matmul_floordiv():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.floordiv = P.FloorDiv().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.floordiv(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (4, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64, 64]), dtype=ms.float32)
- _executor.compile(net, x, y, b)
-
-
- def test_matmul_floordiv_broadcast():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.floordiv = P.FloorDiv().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.floordiv(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (2, ))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64]), dtype=ms.float32)
- _executor.compile(net, x, y, b)
-
-
- def test_matmul_floordiv_broadcast2():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2):
- super().__init__()
- self.matmul = P.MatMul().set_strategy(strategy1)
- self.floordiv = P.FloorDiv().set_strategy(strategy2)
-
- def construct(self, x, y, b):
- out = self.matmul(x, y)
- out = self.floordiv(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((2, 4), (4, 1))
- strategy2 = ((4, 1), (1, 2))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- x = Tensor(np.ones([64, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 1]), dtype=ms.float32)
- b = Tensor(np.ones([1, 64]), dtype=ms.float32)
- _executor.compile(net, x, y, b)
|