|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Warpctc training"""
- import os
- import math as m
- import random
- import argparse
- import numpy as np
- import mindspore.nn as nn
- from mindspore import context
- from mindspore import dataset as de
- from mindspore.train.model import Model, ParallelMode
- from mindspore.nn.wrap import WithLossCell
- from mindspore.train.callback import TimeMonitor, LossMonitor, CheckpointConfig, ModelCheckpoint
- from mindspore.communication.management import init, get_group_size, get_rank
-
- from src.loss import CTCLoss, CTCLossV2
- from src.config import config as cf
- from src.dataset import create_dataset
- from src.warpctc import StackedRNN, StackedRNNForGPU
- from src.warpctc_for_train import TrainOneStepCellWithGradClip
- from src.lr_schedule import get_lr
-
- random.seed(1)
- np.random.seed(1)
- de.config.set_seed(1)
-
- parser = argparse.ArgumentParser(description="Warpctc training")
- parser.add_argument("--run_distribute", action='store_true', help="Run distribute, default is false.")
- parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path, default is None')
- parser.add_argument('--platform', type=str, default='Ascend', choices=['Ascend', 'GPU'],
- help='Running platform, choose from Ascend, GPU, and default is Ascend.')
- parser.set_defaults(run_distribute=False)
- args_opt = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform, save_graphs=False)
- if args_opt.platform == 'Ascend':
- device_id = int(os.getenv('DEVICE_ID'))
- context.set_context(device_id=device_id)
-
-
- if __name__ == '__main__':
- lr_scale = 1
- if args_opt.run_distribute:
- if args_opt.platform == 'Ascend':
- init()
- lr_scale = 1
- device_num = int(os.environ.get("RANK_SIZE"))
- rank = int(os.environ.get("RANK_ID"))
- else:
- init('nccl')
- lr_scale = 0.5
- device_num = get_group_size()
- rank = get_rank()
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(device_num=device_num,
- parallel_mode=ParallelMode.DATA_PARALLEL,
- mirror_mean=True)
- else:
- device_num = 1
- rank = 0
-
- max_captcha_digits = cf.max_captcha_digits
- input_size = m.ceil(cf.captcha_height / 64) * 64 * 3
- # create dataset
- dataset = create_dataset(dataset_path=args_opt.dataset_path, batch_size=cf.batch_size,
- num_shards=device_num, shard_id=rank, device_target=args_opt.platform)
- step_size = dataset.get_dataset_size()
- # define lr
- lr_init = cf.learning_rate if not args_opt.run_distribute else cf.learning_rate * device_num * lr_scale
- lr = get_lr(cf.epoch_size, step_size, lr_init)
- if args_opt.platform == 'Ascend':
- loss = CTCLoss(max_sequence_length=cf.captcha_width,
- max_label_length=max_captcha_digits,
- batch_size=cf.batch_size)
- net = StackedRNN(input_size=input_size, batch_size=cf.batch_size, hidden_size=cf.hidden_size)
- opt = nn.SGD(params=net.trainable_params(), learning_rate=lr, momentum=cf.momentum)
- else:
- loss = CTCLossV2(max_sequence_length=cf.captcha_width, batch_size=cf.batch_size)
- net = StackedRNNForGPU(input_size=input_size, batch_size=cf.batch_size, hidden_size=cf.hidden_size)
- opt = nn.Momentum(params=net.trainable_params(), learning_rate=lr, momentum=cf.momentum)
-
- net = WithLossCell(net, loss)
- net = TrainOneStepCellWithGradClip(net, opt).set_train()
- # define model
- model = Model(net)
- # define callbacks
- callbacks = [LossMonitor(), TimeMonitor(data_size=step_size)]
- if cf.save_checkpoint:
- config_ck = CheckpointConfig(save_checkpoint_steps=cf.save_checkpoint_steps,
- keep_checkpoint_max=cf.keep_checkpoint_max)
- ckpt_cb = ModelCheckpoint(prefix="warpctc", directory=cf.save_checkpoint_path, config=config_ck)
- callbacks.append(ckpt_cb)
- model.train(cf.epoch_size, dataset, callbacks=callbacks)
|