You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 4.8 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """Warpctc training"""
  16. import os
  17. import math as m
  18. import random
  19. import argparse
  20. import numpy as np
  21. import mindspore.nn as nn
  22. from mindspore import context
  23. from mindspore import dataset as de
  24. from mindspore.train.model import Model, ParallelMode
  25. from mindspore.nn.wrap import WithLossCell
  26. from mindspore.train.callback import TimeMonitor, LossMonitor, CheckpointConfig, ModelCheckpoint
  27. from mindspore.communication.management import init, get_group_size, get_rank
  28. from src.loss import CTCLoss, CTCLossV2
  29. from src.config import config as cf
  30. from src.dataset import create_dataset
  31. from src.warpctc import StackedRNN, StackedRNNForGPU
  32. from src.warpctc_for_train import TrainOneStepCellWithGradClip
  33. from src.lr_schedule import get_lr
  34. random.seed(1)
  35. np.random.seed(1)
  36. de.config.set_seed(1)
  37. parser = argparse.ArgumentParser(description="Warpctc training")
  38. parser.add_argument("--run_distribute", action='store_true', help="Run distribute, default is false.")
  39. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path, default is None')
  40. parser.add_argument('--platform', type=str, default='Ascend', choices=['Ascend', 'GPU'],
  41. help='Running platform, choose from Ascend, GPU, and default is Ascend.')
  42. parser.set_defaults(run_distribute=False)
  43. args_opt = parser.parse_args()
  44. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform, save_graphs=False)
  45. if args_opt.platform == 'Ascend':
  46. device_id = int(os.getenv('DEVICE_ID'))
  47. context.set_context(device_id=device_id)
  48. if __name__ == '__main__':
  49. lr_scale = 1
  50. if args_opt.run_distribute:
  51. if args_opt.platform == 'Ascend':
  52. init()
  53. lr_scale = 1
  54. device_num = int(os.environ.get("RANK_SIZE"))
  55. rank = int(os.environ.get("RANK_ID"))
  56. else:
  57. init('nccl')
  58. lr_scale = 0.5
  59. device_num = get_group_size()
  60. rank = get_rank()
  61. context.reset_auto_parallel_context()
  62. context.set_auto_parallel_context(device_num=device_num,
  63. parallel_mode=ParallelMode.DATA_PARALLEL,
  64. mirror_mean=True)
  65. else:
  66. device_num = 1
  67. rank = 0
  68. max_captcha_digits = cf.max_captcha_digits
  69. input_size = m.ceil(cf.captcha_height / 64) * 64 * 3
  70. # create dataset
  71. dataset = create_dataset(dataset_path=args_opt.dataset_path, batch_size=cf.batch_size,
  72. num_shards=device_num, shard_id=rank, device_target=args_opt.platform)
  73. step_size = dataset.get_dataset_size()
  74. # define lr
  75. lr_init = cf.learning_rate if not args_opt.run_distribute else cf.learning_rate * device_num * lr_scale
  76. lr = get_lr(cf.epoch_size, step_size, lr_init)
  77. if args_opt.platform == 'Ascend':
  78. loss = CTCLoss(max_sequence_length=cf.captcha_width,
  79. max_label_length=max_captcha_digits,
  80. batch_size=cf.batch_size)
  81. net = StackedRNN(input_size=input_size, batch_size=cf.batch_size, hidden_size=cf.hidden_size)
  82. opt = nn.SGD(params=net.trainable_params(), learning_rate=lr, momentum=cf.momentum)
  83. else:
  84. loss = CTCLossV2(max_sequence_length=cf.captcha_width, batch_size=cf.batch_size)
  85. net = StackedRNNForGPU(input_size=input_size, batch_size=cf.batch_size, hidden_size=cf.hidden_size)
  86. opt = nn.Momentum(params=net.trainable_params(), learning_rate=lr, momentum=cf.momentum)
  87. net = WithLossCell(net, loss)
  88. net = TrainOneStepCellWithGradClip(net, opt).set_train()
  89. # define model
  90. model = Model(net)
  91. # define callbacks
  92. callbacks = [LossMonitor(), TimeMonitor(data_size=step_size)]
  93. if cf.save_checkpoint:
  94. config_ck = CheckpointConfig(save_checkpoint_steps=cf.save_checkpoint_steps,
  95. keep_checkpoint_max=cf.keep_checkpoint_max)
  96. ckpt_cb = ModelCheckpoint(prefix="warpctc", directory=cf.save_checkpoint_path, config=config_ck)
  97. callbacks.append(ckpt_cb)
  98. model.train(cf.epoch_size, dataset, callbacks=callbacks)