You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 4.2 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. #################train lstm example on aclImdb########################
  17. python train.py --preprocess=true --aclimdb_path=your_imdb_path --glove_path=your_glove_path
  18. """
  19. import argparse
  20. import os
  21. import numpy as np
  22. from config import lstm_cfg as cfg
  23. from dataset import convert_to_mindrecord
  24. from dataset import create_dataset
  25. from mindspore import Tensor, nn, Model, context
  26. from mindspore.model_zoo.lstm import SentimentNet
  27. from mindspore.nn import Accuracy
  28. from mindspore.train.callback import LossMonitor, CheckpointConfig, ModelCheckpoint, TimeMonitor
  29. if __name__ == '__main__':
  30. parser = argparse.ArgumentParser(description='MindSpore LSTM Example')
  31. parser.add_argument('--preprocess', type=str, default='false', choices=['true', 'false'],
  32. help='whether to preprocess data.')
  33. parser.add_argument('--aclimdb_path', type=str, default="./aclImdb",
  34. help='path where the dataset is stored.')
  35. parser.add_argument('--glove_path', type=str, default="./glove",
  36. help='path where the GloVe is stored.')
  37. parser.add_argument('--preprocess_path', type=str, default="./preprocess",
  38. help='path where the pre-process data is stored.')
  39. parser.add_argument('--ckpt_path', type=str, default="./",
  40. help='the path to save the checkpoint file.')
  41. parser.add_argument('--device_target', type=str, default="GPU", choices=['GPU', 'CPU'],
  42. help='the target device to run, support "GPU", "CPU". Default: "GPU".')
  43. args = parser.parse_args()
  44. context.set_context(
  45. mode=context.GRAPH_MODE,
  46. save_graphs=False,
  47. device_target=args.device_target)
  48. if args.preprocess == "true":
  49. print("============== Starting Data Pre-processing ==============")
  50. convert_to_mindrecord(cfg.embed_size, args.aclimdb_path, args.preprocess_path, args.glove_path)
  51. embedding_table = np.loadtxt(os.path.join(args.preprocess_path, "weight.txt")).astype(np.float32)
  52. network = SentimentNet(vocab_size=embedding_table.shape[0],
  53. embed_size=cfg.embed_size,
  54. num_hiddens=cfg.num_hiddens,
  55. num_layers=cfg.num_layers,
  56. bidirectional=cfg.bidirectional,
  57. num_classes=cfg.num_classes,
  58. weight=Tensor(embedding_table),
  59. batch_size=cfg.batch_size)
  60. loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
  61. opt = nn.Momentum(network.trainable_params(), cfg.learning_rate, cfg.momentum)
  62. loss_cb = LossMonitor()
  63. model = Model(network, loss, opt, {'acc': Accuracy()})
  64. print("============== Starting Training ==============")
  65. ds_train = create_dataset(args.preprocess_path, cfg.batch_size, cfg.num_epochs)
  66. config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
  67. keep_checkpoint_max=cfg.keep_checkpoint_max)
  68. ckpoint_cb = ModelCheckpoint(prefix="lstm", directory=args.ckpt_path, config=config_ck)
  69. time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
  70. if args.device_target == "CPU":
  71. model.train(cfg.num_epochs, ds_train, callbacks=[time_cb, ckpoint_cb, loss_cb], dataset_sink_mode=False)
  72. else:
  73. model.train(cfg.num_epochs, ds_train, callbacks=[time_cb, ckpoint_cb, loss_cb])
  74. print("============== Training Success ==============")