|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- Produce the dataset
- """
-
- from config import alexnet_cfg as cfg
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.c_transforms as C
- import mindspore.dataset.transforms.vision.c_transforms as CV
- from mindspore.common import dtype as mstype
-
-
- def create_dataset(data_path, batch_size=32, repeat_size=1, status="train"):
- """
- create dataset for train or test
- """
- cifar_ds = ds.Cifar10Dataset(data_path)
- rescale = 1.0 / 255.0
- shift = 0.0
-
- resize_op = CV.Resize((cfg.image_height, cfg.image_width))
- rescale_op = CV.Rescale(rescale, shift)
- normalize_op = CV.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
- if status == "train":
- random_crop_op = CV.RandomCrop([32, 32], [4, 4, 4, 4])
- random_horizontal_op = CV.RandomHorizontalFlip()
- channel_swap_op = CV.HWC2CHW()
- typecast_op = C.TypeCast(mstype.int32)
- cifar_ds = cifar_ds.map(input_columns="label", operations=typecast_op)
- if status == "train":
- cifar_ds = cifar_ds.map(input_columns="image", operations=random_crop_op)
- cifar_ds = cifar_ds.map(input_columns="image", operations=random_horizontal_op)
- cifar_ds = cifar_ds.map(input_columns="image", operations=resize_op)
- cifar_ds = cifar_ds.map(input_columns="image", operations=rescale_op)
- cifar_ds = cifar_ds.map(input_columns="image", operations=normalize_op)
- cifar_ds = cifar_ds.map(input_columns="image", operations=channel_swap_op)
-
- cifar_ds = cifar_ds.shuffle(buffer_size=cfg.buffer_size)
- cifar_ds = cifar_ds.batch(batch_size, drop_remainder=True)
- cifar_ds = cifar_ds.repeat(repeat_size)
- return cifar_ds
|