|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Define schema of model lineage input parameters."""
- from marshmallow import Schema, fields, ValidationError, pre_load, validates
-
- from mindinsight.lineagemgr.common.exceptions.error_code import LineageErrorMsg, LineageErrors
- from mindinsight.lineagemgr.common.exceptions.exceptions import LineageParamTypeError, LineageParamValueError
- from mindinsight.lineagemgr.common.utils import enum_to_list
- from mindinsight.lineagemgr.querier.querier import LineageType
- from mindinsight.lineagemgr.querier.query_model import FIELD_MAPPING
- from mindinsight.utils.exceptions import MindInsightException
-
-
- class SearchModelConditionParameter(Schema):
- """Define the search model condition parameter schema."""
- summary_dir = fields.Dict()
- loss_function = fields.Dict()
- train_dataset_path = fields.Dict()
- train_dataset_count = fields.Dict()
- test_dataset_path = fields.Dict()
- test_dataset_count = fields.Dict()
- network = fields.Dict()
- optimizer = fields.Dict()
- learning_rate = fields.Dict()
- epoch = fields.Dict()
- batch_size = fields.Dict()
- device_num = fields.Dict()
- loss = fields.Dict()
- model_size = fields.Dict()
- limit = fields.Int(validate=lambda n: 0 < n <= 100)
- offset = fields.Int(validate=lambda n: 0 <= n <= 100000)
- sorted_name = fields.Str()
- sorted_type = fields.Str(allow_none=True)
- dataset_mark = fields.Dict()
- lineage_type = fields.Dict()
-
- @staticmethod
- def check_dict_value_type(data, value_type):
- """Check dict value type and int scope."""
- for key, value in data.items():
- if key in ["in", "not_in"]:
- if not isinstance(value, (list, tuple)):
- raise ValidationError("The value of `in` operation must be list or tuple.")
- else:
- if not isinstance(value, value_type):
- raise ValidationError("Wrong value type.")
- if value_type is int:
- if value < 0 or value > pow(2, 63) - 1:
- raise ValidationError("Int value should <= pow(2, 63) - 1.")
- if isinstance(value, bool):
- raise ValidationError("Wrong value type.")
-
- @staticmethod
- def check_param_value_type(data):
- """Check input param's value type."""
- for key, value in data.items():
- if key == "in":
- if not isinstance(value, (list, tuple)):
- raise ValidationError("The value of `in` operation must be list or tuple.")
- else:
- if isinstance(value, bool) or \
- (not isinstance(value, float) and not isinstance(value, int)):
- raise ValidationError("Wrong value type.")
-
- @staticmethod
- def check_operation(data):
- """Check input param's compare operation."""
- if not set(data.keys()).issubset(['in', 'eq', 'not_in']):
- raise ValidationError("Its operation should be `eq`, `in` or `not_in`.")
-
- @validates("loss")
- def check_loss(self, data):
- """Check loss."""
- SearchModelConditionParameter.check_param_value_type(data)
-
- @validates("learning_rate")
- def check_learning_rate(self, data):
- """Check learning_rate."""
- SearchModelConditionParameter.check_param_value_type(data)
-
- @validates("loss_function")
- def check_loss_function(self, data):
- """Check loss function."""
- SearchModelConditionParameter.check_operation(data)
- SearchModelConditionParameter.check_dict_value_type(data, str)
-
- @validates("train_dataset_path")
- def check_train_dataset_path(self, data):
- """Check train dataset path."""
- SearchModelConditionParameter.check_operation(data)
- SearchModelConditionParameter.check_dict_value_type(data, str)
-
- @validates("train_dataset_count")
- def check_train_dataset_count(self, data):
- """Check train dataset count."""
- SearchModelConditionParameter.check_dict_value_type(data, int)
-
- @validates("test_dataset_path")
- def check_test_dataset_path(self, data):
- """Check test dataset path."""
- SearchModelConditionParameter.check_operation(data)
- SearchModelConditionParameter.check_dict_value_type(data, str)
-
- @validates("test_dataset_count")
- def check_test_dataset_count(self, data):
- """Check test dataset count."""
- SearchModelConditionParameter.check_dict_value_type(data, int)
-
- @validates("network")
- def check_network(self, data):
- """Check network."""
- SearchModelConditionParameter.check_operation(data)
- SearchModelConditionParameter.check_dict_value_type(data, str)
-
- @validates("optimizer")
- def check_optimizer(self, data):
- """Check optimizer."""
- SearchModelConditionParameter.check_operation(data)
- SearchModelConditionParameter.check_dict_value_type(data, str)
-
- @validates("epoch")
- def check_epoch(self, data):
- """Check epoch."""
- SearchModelConditionParameter.check_dict_value_type(data, int)
-
- @validates("batch_size")
- def check_batch_size(self, data):
- """Check batch size."""
- SearchModelConditionParameter.check_dict_value_type(data, int)
-
- @validates("device_num")
- def check_device_num(self, data):
- """Check device num."""
- SearchModelConditionParameter.check_dict_value_type(data, int)
-
- @validates("model_size")
- def check_model_size(self, data):
- """Check model size."""
- SearchModelConditionParameter.check_dict_value_type(data, int)
-
- @validates("summary_dir")
- def check_summary_dir(self, data):
- """Check summary dir."""
- SearchModelConditionParameter.check_operation(data)
- SearchModelConditionParameter.check_dict_value_type(data, str)
-
- @validates("dataset_mark")
- def check_dataset_mark(self, data):
- """Check dataset mark."""
- SearchModelConditionParameter.check_operation(data)
- SearchModelConditionParameter.check_dict_value_type(data, str)
-
- @validates("lineage_type")
- def check_lineage_type(self, data):
- """Check lineage type."""
- SearchModelConditionParameter.check_operation(data)
- SearchModelConditionParameter.check_dict_value_type(data, str)
- recv_types = []
- for key, value in data.items():
- if key == "in":
- recv_types = value
- else:
- recv_types.append(value)
-
- lineage_types = enum_to_list(LineageType)
- if not set(recv_types).issubset(lineage_types):
- raise ValidationError("Given lineage type should be one of %s." % lineage_types)
-
- @pre_load
- def check_comparison(self, data, **kwargs):
- """Check comparison for all parameters in schema."""
- for attr, condition in data.items():
- if attr in ["limit", "offset", "sorted_name", "sorted_type", 'lineage_type']:
- continue
-
- if not isinstance(attr, str):
- raise LineageParamValueError('The search attribute not supported.')
-
- if attr not in FIELD_MAPPING and not attr.startswith(('metric/', 'user_defined/')):
- raise LineageParamValueError('The search attribute not supported.')
-
- if not isinstance(condition, dict):
- raise LineageParamTypeError("The search_condition element {} should be dict."
- .format(attr))
-
- for key in condition.keys():
- if key not in ["eq", "lt", "gt", "le", "ge", "in", "not_in"]:
- raise LineageParamValueError("The compare condition should be in "
- "('eq', 'lt', 'gt', 'le', 'ge', 'in', 'not_in').")
-
- if attr.startswith('metric/'):
- if len(attr) == 7:
- raise LineageParamValueError(
- 'The search attribute not supported.'
- )
- try:
- SearchModelConditionParameter.check_param_value_type(condition)
- except ValidationError:
- raise MindInsightException(
- error=LineageErrors.LINEAGE_PARAM_METRIC_ERROR,
- message=LineageErrorMsg.LINEAGE_METRIC_ERROR.value.format(attr)
- )
- return data
|