|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- Management of all conditions.
-
- This module is used to register all conditions, as well as their parameters.
- This module also provide the available conditions to condition_collections api.
- """
- from enum import Enum
- from mindinsight.conditionmgr.log import logger
-
-
- class ConditionIdEnum(Enum):
- """Condition ids."""
- WEIGHT_INITIALIZATION = "weight_initialization"
- WEIGHT_OVERFLOW = "weight_overflow"
- WEIGHT_TOO_LARGE = "weight_too_large"
- WEIGHT_TOO_SMALL = "weight_too_small"
- GRADIENT_VANISHING = "gradient_vanishing"
- GRADIENT_TOO_LARGE = "gradient_too_large"
- GRADIENT_EXPLODING = "gradient_exploding"
- TENSOR_OVERFLOW = "tensor_overflow"
- OPERATOR_OVERFLOW = "operator_overflow"
- NAN = "nan"
- OVERFLOW_ASCEND_CHIP = "overflow"
- INF = "inf"
- MAX_GT = "max_gt"
- MAX_LT = "max_lt"
- MIN_GT = "min_gt"
- MIN_LT = "min_lt"
- MAX_MIN_GT = "max_min_gt"
- MAX_MIN_LT = "max_min_lt"
- MEAN_GT = "mean_gt"
- MEAN_LT = "mean_lt"
- TENSOR_INITIALIZATION = "tensor_initialization"
- TENSOR_TOO_LARGE = "tensor_too_large"
- TENSOR_TOO_SMALL = "tensor_too_small"
- TENSOR_ALL_ZERO = "tensor_all_zero"
- WEIGHT_NOT_CHANGED = "weight_not_changed"
- WEIGHT_CHANGE_TOO_LARGE = "weight_change_too_large"
- WEIGHT_CHANGE_TOO_SMALL = "weight_change_too_small"
- TENSOR_CHANGE_TOO_LARGE = "tensor_change_too_large"
- TENSOR_CHANGE_TOO_SMALL = "tensor_change_too_small"
- TENSOR_NOT_CHANGED = "tensor_not_changed"
-
-
- class OptimizePhaseEnum(Enum):
- """Optimize phases."""
- TENSOR_CHECK = 400
- OPERATOR_CHECK = 100
- LOSS_CHECK = 300
- INPUT_DATA_CHECK = 200
-
-
- class ValueTypeEnum(Enum):
- """Value types."""
- FLOAT64 = 1
- INT64 = 2
- BOOL = 3
-
-
- class PlatformEnum(Enum):
- """Platform types."""
- GPU = "GPU"
- ASCEND = "Ascend"
-
-
- class TargetTypeEnum(Enum):
- """Target types."""
- TENSOR = 'tensor'
- WEIGHT = 'weight'
- ACTIVATION = 'activation'
- GRADIENT = 'gradient'
-
-
- class ConditionContext:
- """
- The class for condition context.
-
- Args:
- backend (str): parameter name.
- step (int): the type of value.
- debugger_capability (tuple): whether the param support no assignment.
- """
- def __init__(self, backend, step=0, debugger_capability=(1, 0)):
- self._backend = backend
- self._step = step
- self._debugger_capability = debugger_capability
-
- @property
- def backend(self):
- """Get backend."""
- return self._backend
-
- @property
- def step(self):
- """Get _step."""
- return self._step
-
- @property
- def debugger_capability(self):
- """Get debugger_capability."""
- return self._debugger_capability
-
-
- class ConditionParameter:
- """
- The class for parameters of conditions.
-
- Args:
- name (str): parameter name.
- value_type (ValueTypeEnum): the type of value.
- valid_test_func (func): the function used to test whether the param is valid.
- support_disable (bool): whether the param support no assignment.
- default_value (float): default value.
- visible_on_ui (bool): whether the param visible on ui.
- """
-
- def __init__(self, name, value_type: ValueTypeEnum, valid_test_func=None, support_disable=True, default_value=None,
- visible_on_ui=True):
- self._name = name
- self._type = value_type
- self._valid_test_func = valid_test_func
- self._support_disable = support_disable
- self._default_value = default_value
- self._visible_on_ui = visible_on_ui
-
- @property
- def name(self):
- """Get name of parameter."""
- return self._name
-
- @property
- def type(self):
- """Get type of parameter."""
- return self._type
-
- @property
- def support_disable(self):
- """Get support_disable of parameter."""
- return self._support_disable
-
- @property
- def default_value(self):
- """Get default_value of parameter."""
- return self._default_value
-
- @property
- def visible_on_ui(self):
- """Get visible_on_ui of parameter."""
- return self._visible_on_ui
-
- def is_valid(self, value):
- """Check is the parameter valid."""
- if self._valid_test_func is None:
- return True
- return self._valid_test_func(value)
-
-
- class Condition:
- """
- The class for parameters of conditions.
-
- Args:
- condition_id (str): condition id.
- abbr (str): the abbreviation of condition id.
- optimize_phase (OptimizePhaseEnum): optimize phase.
- parameters (List[ConditionParameter]): parameters.
- supported_target_type (TargetTypeEnum): the supported target type.
- supported_platforms (tuple[PlatformEnum, PlatformEnum]): the supported platforms.
- minimum_debugger_capability (tuple): the minimum debugger capability required.
- availability_test_func (func): the function used to test whether the condition is available.
- """
- def __init__(self, condition_id, abbr, optimize_phase, parameters, supported_target_type, supported_platforms,
- minimum_debugger_capability, availability_test_func=None):
- self.id = condition_id
- self._abbr = abbr
- self.optimize_phase = optimize_phase
- self._parameters = {
- parameter.name: parameter for parameter in parameters
- }
- self._supported_target_type = supported_target_type
- self.supported_platforms = supported_platforms
- self.minimum_debugger_capability = minimum_debugger_capability
- self.availability_test_func = availability_test_func
-
- def get_parameter_definition(self, name):
- """Return parameter definition by the name"""
- return self._parameters[name]
-
- def is_available(self, condition_context):
- """Check is the condition available."""
- backend = condition_context.backend
- debugger_capability = condition_context.debugger_capability
- if debugger_capability < self.minimum_debugger_capability:
- logger.debug("The debugger capability is lower than the minimum debugger capability.")
- return False
- if backend not in [platform.value for platform in self.supported_platforms]:
- logger.debug("The condition %s is not supported on the platform.", self.id)
- return False
- if self.availability_test_func is None:
- return True
- return self.availability_test_func(condition_context)
-
- @property
- def abbr(self):
- """The abbreviation of condition"""
- return self._abbr
-
- @property
- def names(self):
- """The name of condition"""
- return self._parameters.keys()
-
- @property
- def parameters(self):
- """The parameters of condition"""
- return self._parameters.values()
-
- @property
- def supported_target_type(self):
- """The supported target type of condition"""
- return self._supported_target_type
-
-
- def check_initialization_available(condition_context):
- """Check if initialization is available at this step"""
- if condition_context.step == 0:
- return True
- return False
-
-
- def check_percentage_param_range(value):
- if 0 <= value <= 100:
- return True
- return False
-
-
- def check_normal_param_range(value):
- if float("-inf") < value < float("inf"):
- return True
- return False
-
-
- def check_abs_param_range(value):
- if 0 <= value < float("inf"):
- return True
- return False
|