|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Implement the debugger server."""
- import signal
- from concurrent import futures
- from threading import Thread
-
- import grpc
-
- from mindinsight.conf import settings
- from mindinsight.datavisual.data_transform.graph import NodeTypeEnum
- from mindinsight.datavisual.utils.tools import to_float
- from mindinsight.debugger.common.exceptions.exceptions import DebuggerParamValueError, \
- DebuggerParamTypeError, DebuggerCreateWatchPointError, DebuggerUpdateWatchPointError, \
- DebuggerDeleteWatchPointError, DebuggerContinueError, DebuggerPauseError, DebuggerCompareTensorError
- from mindinsight.debugger.common.log import logger as log
- from mindinsight.debugger.common.utils import get_ack_reply, ServerStatus, \
- create_view_event_from_tensor_history, Streams, is_scope_type, NodeBasicInfo
- from mindinsight.debugger.debugger_cache import DebuggerCache
- from mindinsight.debugger.debugger_grpc_server import DebuggerGrpcServer
- from mindinsight.debugger.proto import debug_grpc_pb2_grpc as grpc_server_base
- from mindinsight.debugger.proto.debug_grpc_pb2 import RunCMD
- from mindinsight.utils.exceptions import MindInsightException
- from mindinsight.utils.tensor import TensorUtils, MAX_DIMENSIONS_FOR_TENSOR
-
-
- class DebuggerServer:
- """The server manager of debugger."""
-
- def __init__(self, grpc_port=None):
- self.grpc_port = grpc_port
- self.cache_store = DebuggerCache()
- self.grpc_server = DebuggerGrpcServer(self.cache_store)
- self.grpc_server_manager = None
- self.back_server = None
-
- def start(self):
- """Start server."""
- grpc_port = self.grpc_port if self.grpc_port else "50051"
- host = settings.HOST if hasattr(settings, 'HOST') else '[::]'
- hostname = "{}:{}".format(host, grpc_port)
- # initialize a grpc server
- grpc_server_manager = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
- grpc_server_base.add_EventListenerServicer_to_server(self.grpc_server, grpc_server_manager)
- grpc_server_manager.add_insecure_port(hostname)
- grpc_server_manager.start()
- my_server_thread = Thread(target=grpc_server_manager.wait_for_termination)
- # start grpc server
- my_server_thread.start()
- self.back_server = my_server_thread
- self.grpc_server_manager = grpc_server_manager
- # register stop server handler
- signal.signal(signal.SIGINT, self._stop_handler)
- log.info("Start grpc server %s", hostname)
-
- def _stop_handler(self, signum, frame):
- """Register stop server handler."""
- self.stop()
- log.debug("Deal with stop signal: %s, %s", signum, frame)
-
- def stop(self):
- """Stop debugger server."""
- self.grpc_server_manager.stop(grace=None)
- self.back_server.join()
- log.info("Stop debugger server.")
-
- def poll_data(self, pos):
- """
- Get the pos-th data from DebuggerCache.
-
- Args:
- pos (int): The index of data.
-
- Returns:
- dict, the data to be updated.
- """
- if not isinstance(pos, str):
- log.error("Pos should be string. Received: %s", pos)
- raise DebuggerParamValueError("Pos should be string.")
-
- reply = self.cache_store.get_data(pos)
-
- return reply
-
- def search(self, name, watch_point_id=0):
- """
- Search for single node in graph.
-
- Args:
- name (str): The name pattern.
- watch_point_id (int): The id of watchpoint. Default: 0.
-
- Returns:
- dict, the searched nodes.
- """
- log.info("receive search request for node:%s, in watchpoint:%d", name, watch_point_id)
- watchpoint_stream = self.cache_store.get_stream_handler(Streams.WATCHPOINT)
- watchpoint_stream.validate_watchpoint_id(watch_point_id)
- graph = self.cache_store.get_stream_handler(Streams.GRAPH).search_nodes(name)
- # add watched label to graph
- watchpoint_stream.set_watch_nodes(graph, watch_point_id)
- return graph
-
- def tensor_comparisons(self, name, shape, detail='data', tolerance='0'):
- """
- Get tensor comparisons data for given name, detail, shape and tolerance.
-
- Args:
- name (str): The name of tensor for ui.
- detail (str): Specify which data to query. Current available value is 'data' which means
- concrete tensor data. Histogram or unique count can be supported in the future.
- shape (str): Specify concrete dimensions of shape.
- tolerance (str): Specify tolerance of difference between current step tensor and previous
- step tensor. Default value is 0.
-
- Raises:
- DebuggerParamValueError, If node type is not parameter or value of detail is not support.
- DebuggerCompareTensorError, If MindSpore is not in waiting state.
- Returns:
- dict, the retrieved data.
- """
- if self.cache_store.get_stream_handler(
- Streams.METADATA).state != ServerStatus.WAITING.value:
- log.error("Failed to compare tensors as the MindSpore is not in waiting state.")
- raise DebuggerCompareTensorError(
- "Failed to compare tensors as the MindSpore is not in waiting state."
- )
- self.validate_tensor_param(name, detail)
- # Limit to query max two dimensions for tensor in table view.
- parsed_shape = TensorUtils.parse_shape(shape, limit=MAX_DIMENSIONS_FOR_TENSOR)
- node_type, tensor_name = self._get_tensor_name_and_type_by_ui_name(name)
- tolerance = to_float(tolerance, 'tolerance')
- tensor_stream = self.cache_store.get_stream_handler(Streams.TENSOR)
- if detail == 'data':
- if node_type == NodeTypeEnum.PARAMETER.value:
- reply = tensor_stream.get_tensors_diff(tensor_name, parsed_shape, tolerance)
- else:
- raise DebuggerParamValueError("The node type must be parameter, but got {}.".format(node_type))
- else:
- raise DebuggerParamValueError("The value of detail: {} is not support.".format(detail))
- return reply
-
- def retrieve(self, mode, filter_condition=None):
- """
- Retrieve data according to mode and params.
-
- Args:
- mode (str): The type of info message.
- filter_condition (dict): The filter condition.
-
- Returns:
- dict, the retrieved data.
- """
- log.info("receive retrieve request for mode:%s\n, filter_condition: %s", mode,
- filter_condition)
- mode_mapping = {
- 'all': self._retrieve_all,
- 'node': self._retrieve_node,
- 'watchpoint': self._retrieve_watchpoint,
- 'watchpoint_hit': self._retrieve_watchpoint_hit
- }
- # validate param <mode>
- if mode not in mode_mapping.keys():
- log.error("Invalid param <mode>. <mode> should be in ['all', 'node', 'watchpoint', "
- "'watchpoint_hit', 'tensor'], but got %s.", mode_mapping)
- raise DebuggerParamTypeError("Invalid mode.")
- filter_condition = {} if filter_condition is None else filter_condition
- reply = mode_mapping[mode](filter_condition)
-
- return reply
-
- def _retrieve_all(self, filter_condition=None):
- """Retrieve metadata, root graph and watchpoint list."""
- if filter_condition:
- log.error("No filter condition required for retrieve all request.")
- raise DebuggerParamTypeError("filter_condition should be empty.")
- self.cache_store.clean_data()
- log.info("Clean data queue cache when retrieve all request.")
- result = {}
- for stream in [Streams.METADATA, Streams.GRAPH, Streams.WATCHPOINT]:
- sub_res = self.cache_store.get_stream_handler(stream).get()
- result.update(sub_res)
-
- return result
-
- def _retrieve_node(self, filter_condition):
- """
- Retrieve node info.
-
- Args:
- filter_condition (dict): Filter condition.
-
- - name (str): The name of single node.
-
- - single_node (bool): If False, return the sub-layer of single node. If True, return
- the node list from root node to single node.
-
- - watch_point_id (int): The id of watchpoint.
-
- Returns:
- dict, reply with graph.
- """
- log.info("Retrieve node %s.", filter_condition)
- # validate node name
- node_name = filter_condition.get('name')
- if node_name:
- self.cache_store.get_stream_handler(Streams.GRAPH).get_node_type(node_name)
- filter_condition['single_node'] = bool(filter_condition.get('single_node'))
- reply = self._get_nodes_info(filter_condition)
- return reply
-
- def _get_nodes_info(self, filter_condition):
- """
- Get nodes info.
-
- Args:
- filter_condition (dict): The filter condition.
-
- - name (str): The node name.
-
- - single_node (bool): If False, return the sub-layer of single node. If True, return
- the node list from root node to single node.
-
- - watch_point_id (int): The id of watchpoint.
-
- Returns:
- dict, reply with graph.
- """
- # validate watch_point_id
- watch_point_id = filter_condition.get('watch_point_id', 0)
- watchpoint_stream = self.cache_store.get_stream_handler(Streams.WATCHPOINT)
- watchpoint_stream.validate_watchpoint_id(watch_point_id)
- # get graph
- graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH)
- reply = graph_stream.get(filter_condition)
- graph = reply.get('graph')
- # add watched label to graph
- watchpoint_stream.set_watch_nodes(graph, watch_point_id)
- return reply
-
- def retrieve_tensor_history(self, node_name):
- """
- Retrieve tensor history for leaf node.
-
- Args:
- node_name (str): The name of leaf node.
-
- Returns:
- dict, the tensor history and metadata.
- """
- log.info("Retrieve tensor history for node: %s.", node_name)
- self._validate_leaf_name(node_name)
- res = self._get_tensor_history(node_name)
- return res
-
- def _validate_leaf_name(self, node_name):
- """Validate if the node is a leaf node."""
- graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH)
- node_type = graph_stream.get_node_type(node_name)
- if is_scope_type(node_type):
- log.error("Scope type node has no tensor history.")
- raise DebuggerParamValueError("Invalid leaf node name.")
-
- def _get_tensor_history(self, node_name):
- """
- Get tensor history for single node.
-
- Args:
- node_name (str): The name of leaf node.
-
- Returns:
- dict, the tensor history and metadata.
- """
- # get basic tensor history
- graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH)
- tensor_history = graph_stream.get_tensor_history(node_name)
- # add tensor value for tensor history
- self._add_tensor_value_for_tensor_history(tensor_history, node_name)
- # add hit label for tensor history
- watchpoint_hit_stream = self.cache_store.get_stream_handler(Streams.WATCHPOINT_HIT)
- watchpoint_hit_stream.update_tensor_history(tensor_history)
- # add metadata
- metadata = self.cache_store.get_stream_handler(Streams.METADATA).get()
- tensor_history.update(metadata)
- return tensor_history
-
- def _add_tensor_value_for_tensor_history(self, tensor_history, node_name):
- """
- Add tensor value for_tensor_history and send ViewCMD if tensor value missed.
-
- Args:
- tensor_history (list[dict]): A list of tensor info, including name and type.
- node_name (str): The UI node name.
-
- Returns:
- dict, the tensor info.
- """
- tensor_stream = self.cache_store.get_stream_handler(Streams.TENSOR)
- missed_tensors = tensor_stream.update_tensor_history(tensor_history)
- if missed_tensors:
- view_cmd = create_view_event_from_tensor_history(missed_tensors)
- self.cache_store.put_command({'view_cmd': view_cmd, 'node_name': node_name})
- log.debug("Send view cmd.")
-
- def retrieve_tensor_value(self, name, detail, shape):
- """Retrieve the tensor value."""
- log.info("Retrieve tensor value: name: %s, detail: %s, shape: %s", name, detail, shape)
- self.validate_tensor_param(name, detail)
- # Limit to query max two dimensions for tensor in table view.
- parsed_shape = TensorUtils.parse_shape(shape, limit=MAX_DIMENSIONS_FOR_TENSOR)
- node_type, tensor_name = self._get_tensor_name_and_type_by_ui_name(name)
- reply = self.cache_store.get_stream_handler(Streams.TENSOR).get(
- {'name': tensor_name,
- 'node_type': node_type,
- 'shape': parsed_shape}
- )
- reply['tensor_value']['name'] = name
-
- return reply
-
- def _get_tensor_name_and_type_by_ui_name(self, name):
- """
- Get inner tensor name and type by UI name.
-
- Args:
- name (str): Node name shown in UI.
-
- Returns:
- str, full name of tensor.
- str, node type of tensor.
- """
- node_name, slot = name.rsplit(':', 1)
- graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH)
- node_type = graph_stream.get_node_type(node_name)
- full_name = graph_stream.get_full_name(node_name)
- tensor_name = full_name + ':' + slot
- return node_type, tensor_name
-
- @staticmethod
- def validate_tensor_param(name, detail):
- """Validate params for retrieve tensor request."""
- # validate name
- if not isinstance(name, str) or ':' not in name:
- log.error("Invalid tensor name. Received: %s", name)
- raise DebuggerParamValueError("Invalid tensor name.")
- # validate data
- if detail != 'data':
- log.error("Invalid detail value. Received: %s", detail)
- raise DebuggerParamValueError("Invalid detail value.")
-
- def _retrieve_watchpoint(self, filter_condition):
- """
- Retrieve watchpoint.
-
- Args:
- filter_condition (dict): Filter condition.
-
- - watch_point_id (int): The id of watchpoint. If not given, return all watchpoints.
-
- - name (str): The name of single node.
-
- - single_node (bool): If False, return the sub-layer of single node. If True, return
- the node list from root node to single node.
-
- Returns:
- dict, watch point list or relative graph.
- """
- watchpoint_id = filter_condition.get('watch_point_id', 0)
- if not watchpoint_id:
- reply = self.cache_store.get_stream_handler(Streams.WATCHPOINT).get()
- log.debug("Get condition of watchpoints.")
- else:
- reply = self._retrieve_node(filter_condition)
- log.debug("Get graph of %d-th watchpoint.", watchpoint_id)
-
- return reply
-
- def _retrieve_watchpoint_hit(self, filter_condition):
- """
- Retrieve watchpoint hit.
-
- Args:
- filter_condition (dict): Filter condition.
-
- - name (str): The name of single node.
-
- - single_node (bool): If False, return the sub-layer of single node. If True, return
- the node list from root node to single node.
-
- Returns:
- dict, watch point list or relative graph.
- """
- node_name = filter_condition.get('name')
- # get all watchpoint hit list
- if node_name is None:
- reply = self.cache_store.get_stream_handler(Streams.WATCHPOINT_HIT).get()
- return reply
- # get tensor history and graph of the hit node.
- self._validate_leaf_name(node_name)
- # get tensor history
- reply = self._get_tensor_history(node_name)
- log.debug("Get tensor history for watchpoint hit node.")
- # get single graph
- if filter_condition.get('single_node'):
- graph = self._get_nodes_info(filter_condition)
- reply.update(graph)
- log.debug("Get tensor history for watchpoint hit node.")
-
- return reply
-
- def create_watchpoint(self, watch_condition, watch_nodes=None, watch_point_id=None):
- """
- Create watchpoint.
-
- Args:
- watch_condition (dict): The watch condition.
-
- - condition (str): Accept `INF` or `NAN`.
-
- - param (list[float]): Not defined yet.
- watch_nodes (list[str]): The list of node names.
- watch_point_id (int): The id of watchpoint.
-
- Returns:
- dict, the id of new watchpoint.
- """
- log.info("Received create watchpoint request. WatchCondition: %s", watch_condition)
- metadata_stream = self.cache_store.get_stream_handler(Streams.METADATA)
- if metadata_stream.state != ServerStatus.WAITING.value:
- log.error("Failed to create watchpoint as the MindSpore is not in waiting state.")
- raise DebuggerCreateWatchPointError(
- "Failed to create watchpoint as the MindSpore is not in waiting state.")
- if metadata_stream.backend == 'GPU' and watch_condition.get('condition') == 'OVERFLOW':
- log.error("GPU doesn't support OVERFLOW watch condition.")
- raise DebuggerParamValueError("GPU doesn't support OVERFLOW watch condition.")
-
- watch_nodes = self._get_node_basic_infos(watch_nodes)
- watch_point_id = self.cache_store.get_stream_handler(Streams.WATCHPOINT).create_watchpoint(
- watch_condition, watch_nodes, watch_point_id)
- log.info("Create watchpoint %d", watch_point_id)
- return {'id': watch_point_id}
-
- def update_watchpoint(self, watch_point_id, watch_nodes, mode, name=None):
- """
- Update watchpoint.
-
- Args:
- watch_point_id (int): The id of watchpoint.
- watch_nodes (list[str]): The list of node names.
- mode (int): The update operator on nodes. 0 for remove nodes from watch nodes.
- 1 for add nodes to watch nodes.
- name (str): The search name. Default: None.
-
- Returns:
- dict, empty response.
- """
- if self.cache_store.get_stream_handler(
- Streams.METADATA).state != ServerStatus.WAITING.value:
- log.error("Failed to update watchpoint as the MindSpore is not in waiting state.")
- raise DebuggerUpdateWatchPointError(
- "Failed to update watchpoint as the MindSpore is not in waiting state."
- )
- # validate parameter
- watchpoint_stream = self.cache_store.get_stream_handler(Streams.WATCHPOINT)
- watchpoint_stream.validate_watchpoint_id(watch_point_id)
- if not watch_nodes or not watch_point_id:
- log.error("Invalid parameter for update watchpoint.")
- raise DebuggerParamValueError("Invalid parameter for update watchpoint.")
- # update watch node
- if name is not None:
- watch_nodes = self._get_watch_nodes_by_search(watch_nodes)
- elif mode == 1:
- watch_nodes = self._get_node_basic_infos(watch_nodes)
-
- watchpoint_stream.update_watchpoint(watch_point_id, watch_nodes, mode)
- log.info("Update watchpoint with id: %d", watch_point_id)
- return {}
-
- def _get_watch_nodes_by_search(self, watch_nodes):
- """Get watched leaf nodes by search name."""
- watched_leaf_nodes = []
- graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH)
- for search_name in watch_nodes:
- search_nodes = graph_stream.get_searched_node_list()
- search_node_names = [
- NodeBasicInfo(name=node.name, full_name=node.full_name, type=node.type)
- for node in search_nodes
- if node.name.startswith(search_name)]
- watched_leaf_nodes.extend(search_node_names)
-
- log.debug("Update nodes: %s", watched_leaf_nodes)
-
- return watched_leaf_nodes
-
- def delete_watchpoint(self, watch_point_id):
- """
- Delete watchpoint.
-
- Args:
- watch_point_id (int): The id of watchpoint.
-
- Returns:
- dict, empty response.
- """
- if self.cache_store.get_stream_handler(
- Streams.METADATA).state != ServerStatus.WAITING.value:
- log.error("Failed to delete watchpoint as the MindSpore is not in waiting state.")
- raise DebuggerDeleteWatchPointError(
- "Failed to delete watchpoint as the MindSpore is not in waiting state."
- )
- self.cache_store.get_stream_handler(Streams.WATCHPOINT).delete_watchpoint(watch_point_id)
- log.info("Delete watchpoint with id: %d", watch_point_id)
- return {}
-
- def _get_node_basic_infos(self, node_names):
- """Get node info according to node names."""
- if not node_names:
- return []
- graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH)
- node_infos = []
- for node_name in node_names:
- node_type = graph_stream.get_node_type(node_name)
- # optimizer later
- if node_type == NodeTypeEnum.AGGREGATION_SCOPE.value:
- sub_nodes = graph_stream.get_nodes(node_name)
- sub_infos = [NodeBasicInfo(name=node.name, full_name=node.full_name, type=node.type)
- for node in sub_nodes]
- node_infos.extend(sub_infos)
- continue
- full_name = graph_stream.get_full_name(node_name)
- node_infos.append(NodeBasicInfo(name=node_name, full_name=full_name, type=node_type))
- return node_infos
-
- def control(self, params=None):
- """
- Control the training process.
-
- Args:
- params (dict): The control params.
-
- - mode (str): Acceptable control command, including `continue`,
- `pause` and `terminate`.
-
- - level (str): The control granularity, `node` level or `step` level.
- Default: `step`.
-
- - steps (int): Specify the steps that training should run.
- Used when `level` is `step`.
-
- - name (str): Specify the name of the node. Used when `level` is `node`.
-
- Returns:
- dict, the response.
- """
- log.info("Receive control request: %s.", params)
- mode = params.get('mode')
- metadata_stream = self.cache_store.get_stream_handler(Streams.METADATA)
- if mode == 'continue':
- reply = self._continue(metadata_stream, params)
- elif mode in ['pause', 'terminate']:
- mode_mapping = {
- 'pause': self._pause,
- 'terminate': self._terminate
- }
- reply = mode_mapping.get(mode)(metadata_stream)
- else:
- log.error("Invalid control mode %s", mode)
- raise DebuggerParamValueError("Invalid control mode.")
-
- return reply
-
- def _continue(self, metadata_stream, params):
- """
- Send RunCMD to MindSpore.
-
- Args:
- metadata_stream (MetadataHandler): The metadata_handler
- params (dict): The control params.
- """
- if metadata_stream.state != ServerStatus.WAITING.value:
- log.error("MindSpore is not ready to run. Current state is: %s", metadata_stream.state)
- raise DebuggerContinueError(
- "MindSpore is not ready to run or is running currently."
- )
- metadata_stream.state = ServerStatus.RUNNING.value
- current_state = ServerStatus.RUNNING.value
- try:
- event = self._construct_run_event(params)
- self._send_watchpoints()
- self.cache_store.put_command(event)
- except MindInsightException as err:
- log.error("Failed to send run event.")
- log.exception(err)
- current_state = ServerStatus.WAITING.value
- metadata_stream.state = current_state
- raise DebuggerContinueError("Failed to send run command.")
- else:
- log.debug("Send the RunCMD to command queue.")
-
- return {'metadata': {'state': current_state}}
-
- def _validate_node_type(self, node_name):
- """Check the node type in node control."""
- if not node_name:
- return
- node_type = self.cache_store.get_stream_handler(Streams.GRAPH).get_node_type(node_name)
- unsupported_types = [item.value for item in list(NodeTypeEnum)]
- if node_type in unsupported_types:
- log.error("Invalid node type. %s", node_name)
- raise DebuggerParamValueError(f"The type of node {node_name} is unsupported for "
- "continue to command.")
-
- def _construct_run_event(self, params):
- """
- Construct run cmd from input control params.
-
- Args:
- params (dict): The control params.
-
- - level (str): The control granularity, `node` level or `step` level.
- Default: `step`.
-
- - steps (int): Specify the steps that training should run.
- Used when `level` is `step`.
-
- - full_name (str): Specify the name of the node. Used when `level` is `node`.
-
- Returns:
- EventReply, control event with run command.
- """
- level = params.get('level', 'step')
- event = get_ack_reply()
- if level == 'step':
- steps = params.get('steps')
- if not steps:
- steps = 1
- run_cmd = RunCMD(run_level='step', run_steps=steps)
- elif level == 'node':
- self._validate_node_type(params.get('name'))
- name = self.cache_store.get_stream_handler(Streams.GRAPH).get_full_name(
- params['name'])
- if not name:
- name = ''
- run_cmd = RunCMD(run_level='node', node_name=name)
- else:
- log.error("Invalid Value. `level` should be `step` or `node`. Got %s", level)
- raise DebuggerParamValueError("level` should be `step` or `node`")
-
- event.run_cmd.CopyFrom(run_cmd)
- log.debug("Construct run event. %s", event)
- return event
-
- def _send_watchpoints(self):
- """Set watchpoints."""
- watchpoint_stream = self.cache_store.get_stream_handler(Streams.WATCHPOINT)
- watchpoints = watchpoint_stream.get(filter_condition=True).get('watch_points')
- if watchpoints:
- for watchpoint in watchpoints:
- event = get_ack_reply()
- event.set_cmd.CopyFrom(watchpoint)
- self.cache_store.put_command(event)
- watchpoint_stream.sync_set_cmd()
- log.debug("Send SetCMD to MindSpore. %s", event)
-
- def _pause(self, metadata_stream):
- """
- Pause the training.
-
- Args:
- metadata_stream (MetadataHandler): The metadata stream handler.
- """
- if metadata_stream.state != ServerStatus.RUNNING.value:
- log.error("The MindSpore is not running.")
- raise DebuggerPauseError("The MindSpore is not running.")
- metadata_stream.state = 'waiting'
- event = get_ack_reply()
- event.run_cmd.CopyFrom(RunCMD(run_level='step', run_steps=0))
- self.cache_store.put_command(event)
- log.debug("Send the Pause command")
- return {'metadata': {'state': 'waiting'}}
-
- def _terminate(self, metadata_stream):
- """
- Terminate the training.
-
- Args:
- metadata_stream (MetadataHandler): The metadata stream handler.
- """
- metadata_stream.state = 'pending'
- event = get_ack_reply()
- event.exit = True
- self.cache_store.put_command(event)
- log.debug("Send the ExitCMD.")
- return {'metadata': {'state': 'pending'}}
-
- def retrieve_node_by_bfs(self, node_name, ascend=False):
- """
- Get the graph of the next node according to node_name.
-
- Args:
- node_name (str): The name of current chosen leaf node.
- ascend (bool): If True, traverse the input nodes;
- If False, traverse the output nodes. Default is True.
-
- Returns:
- dict, the next node information.
- """
- log.info("Retrieve node <%s> by bfs, `ascend` is :%s",
- node_name, ascend)
- reply = {}
- graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH)
- next_node_name = graph_stream.get_node_by_bfs_order(node_name, ascend)
- # no next node
- if next_node_name is None:
- return reply
- # add graph and tensor history for next node
- filter_condition = {
- 'name': next_node_name,
- 'single_node': True
- }
- search_graph = self._get_nodes_info(filter_condition)
- reply = {'name': next_node_name}
- reply.update(search_graph)
-
- return reply
|